Skip to main content
Log in

Export Production in the Equatorial and North Pacific Derived from Dissolved Oxygen, Nutrient and Carbon Data

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A global ocean inverse model that includes the 3D ocean circulation as well as the production, sinking and remineralization of biogenic particulate matter is used to estimate the carbon export flux in the Pacific, north of 10°S. The model exploits the existing large datasets for hydrographic parameters, dissolved oxygen, nutrients and carbon, and determines optimal export production rates by fitting the model to the observed water column distributions by means of the “adjoint method”. In the model, the observations can be explained satisfactorily with an integrated carbon export production of about 3 Gt C yr−1 (equivalent to 3⋅1015 gC yr−1) for the considered zone of the Pacific Ocean. This amounts to about a third of the global ocean carbon export of 9.6 Gt C yr−1 in the model. The highest export fluxes occur in the coastal upwelling region off northwestern America and in the tropical eastern Pacific. Due to the large surface area, the open-ocean, oligotrophic region in the central North Pacific also contributes significantly to the total North Pacific export flux (0.45 Gt C yr−1), despite the rather small average flux densities in this region (13 gC m−2yr−1). Model e-ratios (calculated here as ratios of model export production to primary production, as inferred from satellite observations) range from as high a value as 0.4 in the tropical Pacific to 0.17 in the oligotrophic central north Pacific. Model e-ratios in the northeastern Pacific upwelling regions amount to about 0.3 and are lower than previous estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, L. A. and J. Sarmiento (1994): Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8, 65–80.

    Article  Google Scholar 

  • Antoine, D., J.-M. Andre and A. Morel (1996): Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cycless, 10(1), 57–69.

    Article  Google Scholar 

  • Arrigo, K. R., D. Worthen, A. Schnell and M. P. Lizotte (1998): Primary production in Southern Ocean waters. J. Geophys. Res., 103, 15587–15600.

    Article  Google Scholar 

  • Aufdenkampe, A. K., J. J. McCarthy, M. Rodier, C. Navarette, J. Dunne and J. W. Murray (2001): Estimation of new production in the tropical Pacific. Global Biogeochem. Cycles, 15(1), 101–112.

    Article  Google Scholar 

  • Bacon, M. P., J. K. Cochran, D. Hirschberg, T. R. Hammar and A. P. Fleer (1996): Export flux of carbon at the equator during the EqPac time-series cruises estimated from 234Th measurements. Deep-Sea Res. II, 43(4-6), 1133–1153.

    Article  Google Scholar 

  • Behrenfeld, M. J. and P. G. Falkowski (1997): Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20.

    Article  Google Scholar 

  • Berger, W. H. (1989): Appendix. Global maps of ocean productivity. p. 429–455. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger, V. S. Smetacek and G. Wefer, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Bishop, J. K. B. (1989): Regional extremes in particular matter composition and flux: effects on the chemistry of the ocean interior. p. 117–137. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger, V. S. Smetacek and G. Wefer, John Wiley & Sons, Inc., Chichester.

    Google Scholar 

  • Boulahdid, M. and J. F. Minster (1989): Oxygen consumption and nutrient regeneration ratios along isopycnal horizons in the Pacific Ocean. Mar. Chem., 26, 133–153.

    Article  Google Scholar 

  • Buesseler, K. O. (1998): The decoupling of production and particulate export in the surface ocean. Global Biogeochem.Cycles, 12(2), 297–310.

    Article  Google Scholar 

  • Charette, M. A., S. B. Moran and J. K. B. Bishop (1999): 234Th as a tracer of particulate organic carbon export in the subarctic northeast Pacific Ocean. Deep-Sea Res. II, 46(11-12), 2833–2861.

    Article  Google Scholar 

  • Chavez, F. P. and R. Barber (1987): An estimate of new production in the equatorial Pacific. Deep-Sea Res., 34(7), 1229–1243.

    Article  Google Scholar 

  • Codispoti, L.A. and J. P. Christensen (1985): Nitrification, denitrification and nitrous oxide cycling in the eastern tropical south Pacific Ocean. Mar. Chem., 16, 277–300.

    Article  Google Scholar 

  • Codispoti, L. A., G. E. Friederich, T. T. Packard, H. E. Glover, P. J. Kelly, R. W. Spinrad, R. T. Barber, J. W. Elkins, B. B. Ward, F. Lipschultz and N. Lostaunau (1986): High nitrite levels off nothern Peru: a signal of instability in the marine denitrification rate. Science, 233, 1200–1202.

    Google Scholar 

  • de las Heras, M. and R. Schlitzer (1999): On the importance of intermediate water flows for the global ocean overturning.J. Geophys. Res., 104, 15515–15536.

    Article  Google Scholar 

  • Dunne, J. P., J. W. Murray, M. Rodier and D. A. Hansell (2000): Export flux in the western and central equatorial Pacific: zonal and temporal variability. Deep-Sea Res. I, 4 (5), 901–936.

    Article  Google Scholar 

  • Emerson, S., P. Quay, D. Karl, C. Winn, L. Tupas and M. Landry (1997): Experimental determination of the organic carbon flux from open-ocean surface waters. Nature, 389, 951–954.

    Article  Google Scholar 

  • Emerson, S., S. Mecking and J. Abell (2001): The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes. Global Biogeochem. Cycles, 15(3), 535–554.

    Article  Google Scholar 

  • Eppley, R. W. and B. J. Peterson (1979): Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 677–680.

    Article  Google Scholar 

  • Fasham, M. J. R., H. W. Ducklow and S. M. McKelvie (1990): A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48, 591–639.

    Google Scholar 

  • Feely, R. A., C. L. Sabine, R. Schlitzer, J. L. Bullister, S. Mecking and D. Greeley (2004): Oxygen utilization and organic carbon remineralization in the upper water column of the Pacific Ocean. J. Oceanogr., 60, this issue, 45–52.

    Article  Google Scholar 

  • Goes, J. I., T. Saino, H. Oaku, J. Ishizaka, C. S. Wong and Y. Nojiri(2000): Basin scale estimates of sea surface nitrate and new production from remotely sensed sea surface temperature and chlorophyll. Geophys. Res. Lett., 27(9), 1263–1266.

    Article  Google Scholar 

  • Gruber, N. and J. L. Sarmiento (1997): Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles, 11, 235–266.

    Article  Google Scholar 

  • Hansell, D. A. and C. A. Carlson (1998): Net community production of dissolved organic carbon. Global Biogeochem.Cycles, 12, 443–453.

    Article  Google Scholar 

  • Hestenes, M. R. (1975): Optimization Theory. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Honda, M. C., K. Imai, Y. Nojiri, F. Hoshi, T. Sugawara and M. Kusakabe (2002): The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997-2000). Deep-Sea Res. II, 49(24-25), 5595–5625.

    Article  Google Scholar 

  • Honjo, S., S. J. Manganini and J. J. Cole (1982): Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res., 29, 609–625.

    Article  Google Scholar 

  • Honjo, S., J. Dymond, R. Collier and S. J. Manganini (1995): Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res. II, 42(2-3), 831–870.

    Article  Google Scholar 

  • Howell, E. A., S. C. Doney, R. A. Fine and D. B. Olson (1997): Geochemical estimates of denitrification in the Arabian Sea and the Bay of Bengal during WOCE. Geophys. Res. Lett., 24, 2549–2552.

    Article  Google Scholar 

  • Jenkins, W. J. (1987): 3H and 3He in the Beta triangle: Observations of gyre ventilation and oxygen utilization rates. J.Phys. Oceanogr., 17, 763–783.

    Article  Google Scholar 

  • Kawahata, H., A. Suzuki and H. Ohta (2000): Export fluxes in the Western Pacific Warm Pool. Deep-Sea Res. I, 47(11), 2061–2091.

    Article  Google Scholar 

  • Kirchman, D. L., Y. Suzuki, C. Garside and H. W. Ducklow (1991): High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature, 352, 612–614.

    Article  Google Scholar 

  • Laws, E. A., P. G. Falkowski, W. O. Smith, H. Ducklow and J. J. McCarthy (2000): Temperature effects on export production in the open ocean. Global Biogeochem. Cycles, 14, 1231–1246.

    Article  Google Scholar 

  • Le Borgne, R., R. A. Feely and D. J. Mackey (2002): Carbon fluxes in the equatorial Pacific: a synthesis of the JGOFS programme. Deep-Sea Res. II, 49(13-14), 2425–2442.

    Article  Google Scholar 

  • Longhurst, A., S. Sathyendranath, T. Platt and C. Caverhill (1995): An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res., 17, 1245–1271.

    Google Scholar 

  • Maier-Reimer, E. (1993): Geochemical cycles in an ocean general circulation model. preindustrial tracer distributions. Global Biogeochem. Cycles, 7, 645–677.

    Article  Google Scholar 

  • Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: Carbon cycling in the northeast Pacific.Deep-Sea Res., 34, 267–285.

    Article  Google Scholar 

  • Matear, R. J., A. C. Hirst and B. I. McNeil (2000): Changes in dissolved oxygen in the Southern Ocean with climate change. Geochemistry Geophysics Geosystems, 1, 2000GC000086.

  • McGillicuddy, D. J., A. R. Robinson, D. A. Siegel, H. W. Jannasch, R. Johnson, T. D. Dickey, J. McNeil, A. F. Michaels and A. H. Knap (1998): Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263–266.

    Article  Google Scholar 

  • McGillicuddy, D. J., L. A. Anderson, S. C. Doney and M. E. Maltrud (2003): Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1??resolution model of the North Atlantic. Global Biogeochem. Cycles, 17(2), 10.1029/2002GB001987.

  • Moore, J. K., S. C. Doney, J. A. Kleypas, D. M. Glover and I. Y. Fung (2001): An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II, 49(1-3), 403–462.

    Article  Google Scholar 

  • Murray, J. W., J. Young, J. Newton, J. Dunne, T. Chapin, B. Paul and J. J. McCarthy (1996): Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach. Deep-Sea Res. II, 43(4-6), 1095–1132.

    Article  Google Scholar 

  • Murray, J. W., R. Leborgne and Y. Dandonneau (1997): JGOFS studies in the equatorial Pacific. Deep-Sea Res. II, 44(9-10), 1759–1763.

    Article  Google Scholar 

  • Ono, T., T. Midorikawa, Y. W. Watanabe, K. Tadokoro and T. Saino (2001): Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophys. Res. Lett., 28(17), 3285–3288.

    Article  Google Scholar 

  • Oschlies, A. (2002): Can eddies make ocean deserts bloom? Global Biogeochem. Cycles, 10.1029/2001GB001830.

  • Reid, J. L. (1986): On the total geostrophic circulation of the South Pacific Ocean: flow patterns, tracers, and transports. Prog. Oceanogr., 16, 1–61.

    Article  Google Scholar 

  • Reid, J. L. (1997): On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Prog.Oceanogr, 39, 263–352.

    Article  Google Scholar 

  • Riley, G. A. (1951): Oxygen, phosphate, and nitrate in the Atlantic Ocean. Bull. Bingham Oceanogr. Coll., 13(1), 1–124.

    Google Scholar 

  • Rintoul, S. R. (1991): South Atlantic interbasin exchange. J.Geophys. Res., 96, 2675–2692.

    Google Scholar 

  • Rintoul, S. and C. Wunsch (1991): Mass, heat, oxygen and nutrient fluxes and budgets in the north Atlantic Ocean. Deep-Sea Res., 38 (Suppl.), S355–S377.

    Google Scholar 

  • Rodier, M. and R. L. Borgne (1997): Export flux of particles at the equator in the western and central Pacific ocean. Deep-Sea Res. II, 44, 2085–2113.

    Article  Google Scholar 

  • Schlitzer, R. (1993): Determining the mean, large-scale circulation of the Atlantic with the adjoint method. J. Phys.Oceanogr., 23, 1935–1952.

    Article  Google Scholar 

  • Schlitzer, R. (1995): An adjoint model for the determination of the mean oceanic circulation, air-sea fluxes and mixing coefficients. Alfred-Wegener-Institut, Bremerhaven.

    Google Scholar 

  • Schlitzer, R. (1996): Mass and heat transports in the South Atlantic derived from historical hydrographic data. p. 305–323. In The South Atlantic: Present and Past Circulation, ed. by G. Siedler, G. Wefer, W. H. Berger and D. Webb, Springer, Berlin.

    Google Scholar 

  • Schlitzer, R. (2000): Applying the adjoint method for global biogeochemical modeling. p. 107–124. In Inverse Methods in Global Biogeochemical Cycles, ed. by P. Kasibhatla, M. Heimann, D. Hartley, N. Mahowald, R. Prinn and P. Rayner, AGU Geophys. Monograph Series, Vol. 114.

  • Schlitzer, R. (2002): Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates. Deep-Sea Res. II, 49, 1623–1644.

    Article  Google Scholar 

  • Schlitzer, R., R. Usbeck and G. Fischer (2003): Inverse modeling of particulate organic carbon fluxes in the South Atlantic. In The South Atlantic in the Late Quaternary-Reconstruction of Material Budget and Current Systems, ed. by G. Wefer, S. Mulitza and V. Rathmeyer, Springer, Berlin (in print).

    Google Scholar 

  • Schneider, B., R. Schlitzer, G. Fischer and E.-M. Nöthig (2003): Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Global Biogeochem. Cycles, 17(2), 1029/2002GB001871.

    Google Scholar 

  • Suess, E. (1980): Particulate organic carbon flux in the oceanssurface productivity and oxygen utilization. Nature, 288, 260–263.

    Article  Google Scholar 

  • Takahashi, T., W. S. Broecker and S. Langer (1985): Redfield ratio based on chemical data from isopycnal surfaces. J.Geophys. Res., 90, 6907–6924.

    Google Scholar 

  • Thacker, W. C. and R. B. Long (1988): Fitting dynamics to data. J. Geophys. Res., 93, 1227–1240.

    Google Scholar 

  • Volk, T. and M. I. Hoffert (1985): Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. p. 99–110. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, ed. by E. T. Sundquist and W. S. Broecker, AGU Geophysical Monograph 32, Washington, D.C.

    Google Scholar 

  • Wefer, G., E. Suess, W. Balzer, G. Liebezeit, P. J. Müller, C. A. Ungerer and W. Zenk (1982): Fluxes of biogenic components from sediment trap deployment in circumpolar waters of the Drake Passage. Nature, 299, 145–147.

    Article  Google Scholar 

  • Whitworth, T., III and W. D. Nowlin, Jr. (1987): Water masses and currents of the southern ocean at the Greenwich meridian. J. Geophys. Res., 92, 6462–6476.

    Article  Google Scholar 

  • Wong, C. S., N. A. D. Waser, Y. Nojiri, F. A. Whitney, J. S. Page and J. Zeng (2002): Seasonal cycles of nutrients and dissolved inorganic carbon at high and mid latitudes in the North Pacific Ocean during the Skaugran cruises: determination of new production and nutrient uptake ratios. Deep-Sea Res. II, 49(24-25), 5317–5338.

    Article  Google Scholar 

  • Yamanaka, Y. and E. Tajika (1996): The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10, 361–382.

    Article  Google Scholar 

  • Yamanaka, Y. and E. Tajika (1997): Role of dissolved organic matter in the marine biogeochemical cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 11, 599–612.

    Article  Google Scholar 

  • Zhang, J. and P. D. Quay (1997): The total organic carbon export rate based on 13C and 12C of DIC budgets in the equatorial Pacific region. Deep-Sea Res. II, 44(9-10), 2163–2190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlitzer, R. Export Production in the Equatorial and North Pacific Derived from Dissolved Oxygen, Nutrient and Carbon Data. Journal of Oceanography 60, 53–62 (2004). https://doi.org/10.1023/B:JOCE.0000038318.38916.e6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCE.0000038318.38916.e6

Navigation