Skip to main content
Log in

The magnetic behaviour of nanostructured zinc ferrite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated a series of nanostructured ZnFe2O4 samples produced by mechanical activation (mean particle sizes d ∼50-8 nm) by variable temperature neutron diffraction measurements (2-535 K) supported by DC magnetisation measurements (4.2-300 K). The systematic increase in the mean inversion parameter (c ∼0.04-0.43) with increasing milling time is accompanied by a gradual decrease in the occurrence of the long range antiferromagnetic ordering observed in the starting ZnFe2O4 material, as well as a gradual decrease in the related diffuse short range order peak. The neutron diffraction patterns of particles with d < ∼15 nm and c> ∼0.2 are consistent with the occurrence of ferrimagnetic order and exchange interactions of the type Fe3+A—O2−—Fe3+ [B]. Diagrams summarising the magnetic regions of nanostructured ZnFe2O4 are presented. The magnetic behaviour overall agrees well with the enhanced magnetisation and ferromagnetic behaviour reported for nanostructured, ultrafine and thin films of ZnFe2O4 by other groups using mainly magnetisation and Mössbauer spectroscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. ŠepelÁk, K. Jancke, J. Richter-mendau, U. Steinike, D.-Chr. Uecker and A. Yu. Rogachev, Kona 12(1994) 87.

    Google Scholar 

  2. P. Druska, U. Steinike and V. ŠepelÁk, J. Solid State Chem. 146(1999) 13.

    Google Scholar 

  3. M. Ahmed, L. Alonso, J. M. Palacios, C. Cilleruelo and J. C. Abanades, Solid State Ionics 138(2000) 51.

    Google Scholar 

  4. S. J. Campbell and W. A. Kaczmarek, in"MÖssbauer Spectroscopy Applied to Magnetism and Magnetic Materials," edited by G. J. Long and F. Grandjean (Plenum Press, New York, 1996) Vol. 2, p. 273.

    Google Scholar 

  5. Yu. T. Pavljukhin, Ya. Ya. Medikov and V. V. Boldyrev, Mater. Res. Bull. 18(1983) 1317.

    Google Scholar 

  6. K. TkÁcovÁ, V. ŠepelÁk, N. ŠtevulovÁ and V. V. Boldyrev, J Solid State Chem. 123(1996) 100.

    Google Scholar 

  7. V. ŠepelÁk, M. Zatroch, K. TkÁcovÁ, P. Petrovic, S. Wißmann and K. D. Becker, Mater Sci. Eng. A 226–228(1997) 22.

    Google Scholar 

  8. V. ŠepelÁk, S. Wißmann and K. D. Becker, J. Mater. Sci. 33(1998) 2845.

    Google Scholar 

  9. Idem., J. Magn. Magn. Mater. 203(1999) 135.

    Google Scholar 

  10. G. F. Goya and H. R. Rechenberg, ibid. 196/197 (1999) 192.

    Google Scholar 

  11. J. Z. Jiang, P. Wynn, S. MØrup, T. Okada and F. J. Berry, Nanostruct. Mater. 12(1999) 737.

    Google Scholar 

  12. C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. GuÉrault and J.-M. GrenÉche, J. Phys.: Condens. Matter 12(2000) 7795.

    Google Scholar 

  13. S. A. Oliver, V. G. Harris, H. H. Hamdeh and J. C. Ho, Appl. Phys. Lett. 76(2000) 2761.

    Google Scholar 

  14. T. Sato, K. Haneda, M. Seki and T. Iijima, Appl. Phys. A 50(1990) 13.

    Google Scholar 

  15. H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, G. Oliveri and G. Busca, J. Appl. Phys. 81(1997) 1851.

    Google Scholar 

  16. S. A. Oliver, H. H. Hamdeh and J. C. Ho, Phys. Rev.B 60(1999) 3400.

    Google Scholar 

  17. S.-H. Yu, T. Fujino and M. Yoshimura, J. Magn. Magn. Mater. 256(2003) 420.

    Google Scholar 

  18. A. Kundu, C. Upadhyay and H. C. Verma, Physics LettersA (in press).

  19. K. Tanaka, S. Nakashima, K. Fujita and K. Hirao, J. Phys.: Condens. Matter 15(2003) L469.

    Google Scholar 

  20. K. E. Sickafus, J. W. Wills and N. W. Grimes, J. Amer. Ceram. Soc. 82(1999) 3279.

    Google Scholar 

  21. W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G. M. Kalvius, A. Martin, M. K. Krause, I. Halevy, J. Gal, W. SchÄfer, G. Will, M. Hillberg and R. WÄppling, Phys. Rev.B 53(1996) 9143.

    Google Scholar 

  22. W. Potzel, W. SchÄfer and G. M. Kalvius, Hyper-fine Interactions 130(2000) 241.

    Google Scholar 

  23. C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian and K. Chattopadhyay, Mater. Sci. Eng.A 304–306(2001) 983.

    Google Scholar 

  24. C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. GuÉrault and J.-M. GrenÉche, Scripta Mater. 44(2001) 1407.

    Google Scholar 

  25. H. Ehrhardt, S. J. Campbell and M. Hofmann, J. Alloys Compd. 339(2002) 255.

    Google Scholar 

  26. W. SchÄfer, W. Kockelmann, A. Kirfel, W. Potzel, F. J. Burghart, G. M. Kalvius, A. Martin, W. A. Kaczmarek and S. J. Campbell, Mater. Sci. Forum 321–324(2000) 802.

    Google Scholar 

  27. F. J. Burghart, W. Potzel, G. M. Kalvius, E. Schreier, G. Grosse, D. R. Noakes, W. SchÄfer, W. Kockelmann, S. J. Campbell, W. A. Kaczmarek, A. Martin and M. K. Krause, PhysicaB 289/290(2000) 286.

    Google Scholar 

  28. H. Ehrhardt, S. J. Campbell and M. Hofmann, Scripta Materialia 48(2003) 1141.

    Google Scholar 

  29. B. Jeyadevan, K. Tohji and K. Natsukasa, J. Appl. Phys. 76(1994) 6325.

    Google Scholar 

  30. J. M. Hastings and M. Corliss, Phys. Rev. 15(1956) 1008.

    Google Scholar 

  31. T. Usa, K. Kamazawa, S. Nakamura, H. Sekiya, Y. Tsunoda, K. Kohn and M. Tanaka, in "Proc. Eighth Int. Conf. on Ferrites," edited by M. Abe and Y. Yamazaki (Kyoto, 2000) p. 316.

  32. K. Kamazawa, Y. Tsunoda, H. Kadowaki and K Kohn, Phys. Rev.B {vn68}024412 (2003).

  33. G. F. Goya, H. R. Rechenberg, M. Chen and W. B. Yelon, J. Appl. Phys. 87(2000) 8005.

    Google Scholar 

  34. Fullprof, Program for Rietveld-Refinement of X-ray and Neutron diffraction patterns, by Juan Rodriguez-Carvajal, Laboratoire Leon Brillouin (CEA-CNRS, 2000), http://wwwllb. cea.fr/fullweb/fp2k/fp2k.htm.

  35. M. K. Fayek, J. Leciejewicz, A. Murasik and I. I. Yamzin, Phys. Stat. Sol. 37(1970) 843.

    Google Scholar 

  36. V. ŠepelÁk, Ann. Chim. Sci. Mat. 27(2002) 61.

    Google Scholar 

  37. J. L. Dormann and M. Nogues, J. Phys.: Condens. Matter 2(1990) 1223.

    Google Scholar 

  38. G. F. Goya and E. R. Leite, ibid. 15(2003) 641.

    Google Scholar 

  39. Y. Labaye, O. Crisan, L. Berger, J.-M. Greneche and J. M. D. Coey, J. Appl. Phys. 91(2002) 8715.

    Google Scholar 

  40. C. M. Srivastava, S. N. Shringi and M. Vijayababu, Bull. Mater. Sci. 6(1984) 27.

    Google Scholar 

  41. U. KÖnig, E. F. Bertaut, Y. Gros, M. Mitrikov and G. Chol, Solid State Comm. 8(1970) 759.

    Google Scholar 

  42. B. Boucher, R. Buhl and M. Perrin, Phys. Stat. Sol. 41(1970) 171.

    Google Scholar 

  43. V. G. Vologin, Sov. Phys. Solid State 29(1987) 1339.

    Google Scholar 

  44. Yu. G. Chukalkin and V. R. Shtirts, ibid. 30(1988) 1683.

    Google Scholar 

  45. Y. Yamada, K. Kamazawa and Y. Tsunoda, Phys. Rev.B 66(2002) 064401.

    Google Scholar 

  46. S. H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim and S. W. Cheong, Nature 418(2002) 856.

    PubMed  Google Scholar 

  47. J. Villain, Z. PhysikB 33(1979) 31.

    Google Scholar 

  48. V. R. N. Bhowmik and R. Ranganathan, J. Magn. Magn. Mater. 248(2002) 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, M., Campbell, S.J., Ehrhardt, H. et al. The magnetic behaviour of nanostructured zinc ferrite. Journal of Materials Science 39, 5057–5065 (2004). https://doi.org/10.1023/B:JMSC.0000039185.80910.59

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000039185.80910.59

Keywords

Navigation