Skip to main content
Log in

Negative thermal expansion artificial material from iron-nickel alloys by oxide co-extrusion with reductive sintering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Objects with a fine-scale design of bimetallic beams can display negative thermal expansion. Based on a unit cell design for a negative expansion, produced by Optimal Design methods, we fabricate a thermoelastic “artificial material” using coextrusion of iron and nickel oxides, followed by reductive sintering. A bulk sample with 162 unit cells from Fe-60Ni and Fe-36Ni alloys displayed a thermal expansion coefficient of −3.0 × 10−6/°C, in agreement with the optimal design prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Kagaya and T. Soma Solid State Commun. 85 (1993) 617.

    Google Scholar 

  2. T. Suzuki, A. Fijita, T. Chiang and K. Fukamichi Mater. Sci. Engng. A 181/182 (1994) 954.

    Google Scholar 

  3. G. Ernst, C. Broholm, G. R. Kowach and A. P. Ramirez Nature 396 (1998) 147.

    Google Scholar 

  4. A. W. Sleight Ann. Rev. Mater. Sci. 281 (1998) 29.

    Google Scholar 

  5. N. J. Capiati J. Polym. Sci. Polym. Phys. Ed. 151 (1997) 1427.

    Google Scholar 

  6. C. L. Choy, F. C. Chen and E. L. Ong Polymer 20 (1979) 1191.

    Google Scholar 

  7. M. De F. F. Pinheiro, D. J. Radcliffe and H. M. Rosenberg, in Proc. of the Int. Cryog. Eng. Conf., 7th London (1978) p. 494.

  8. G. Hausch, R. Bacher and J. Hartmann Physica B 161 (1998) 22.

    Google Scholar 

  9. J. S. Moya, A. G. Verduch and M. Hortal Trans. J. Brit. Ceram. Soc. 73 (1974) 177.

    Google Scholar 

  10. D. A. Woodcock, P. Lightfoot and R. I. Smith Mater. Res. Soc. Symp. Proc. 547 (1999) 191.

    Google Scholar 

  11. G. L. Belenkii, E. Yu. Salaev, N. A. Suleimanov, N. A. Abdullaev and V. Ya. Shteishraiber Solid State Commun. 53 (1985) 967.

    Google Scholar 

  12. O. Sigmund and S. Torquato J. Mech. Phys. Solids 45 (1997) 1037.

    Google Scholar 

  13. Bing-Chung Chen, “Optimal Design of Material Microstructure and Optimization of Structural Topology for Design-Dependent Loads,” Ph.D. Thesis, Mechanical Engineering, University of Michigan, 2000.

  14. Bing-Chung Chen, Emilio C. N. Silva and N. Kikuchi Intern. J. Numer. Meth. Engng. 52 (2001) 23.

    Google Scholar 

  15. M. P. BendsØe and N. Kikuchi Comp. Meth. Appl. Mech. Engng. 71 (1988) 197.

    Google Scholar 

  16. Y. Tanji J. Phys. Soc. Japan 31 (1975) 1366.

    Google Scholar 

  17. C. Van Hoy, A. Barda, M. Griffith and J. W. Halloran J. Amer. Ceram. Soc. 81 (1998) 152.

    Google Scholar 

  18. A. T. Crumm and J. W. Halloran ibid. 81 (1998) 1053.

    Google Scholar 

  19. A. T. Crumm, “MicroFabrication by Coextrusion,” Ph.D. Dissertation University of Michigan, 2000.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Halloran, J.W. Negative thermal expansion artificial material from iron-nickel alloys by oxide co-extrusion with reductive sintering. Journal of Materials Science 39, 4113–4118 (2004). https://doi.org/10.1023/B:JMSC.0000033391.65327.9d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000033391.65327.9d

Keywords

Navigation