Skip to main content
Log in

The Activity Phase of Postsynaptic Neurons in a Simplified Rhythmic Network

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Many inhibitory rhythmic networks produce activity in a range of frequencies. The relative phase of activity between neurons in these networks is often a determinant of the network output. This relative phase is determined by the interaction between synaptic inputs to the neurons and their intrinsic properties. We show, in a simplified network consisting of an oscillator inhibiting a follower neuron, how the interaction between synaptic depression and a transient potassium current in the follower neuron determines the activity phase of this neuron. We derive a mathematical expression to determine at what phase of the oscillation the follower neuron becomes active. This expression can be used to understand which parameters determine the phase of activity of the follower as the frequency of the oscillator is changed. We show that in the presence of synaptic depression, there can be three distinct frequency intervals, in which the phase of the follower neuron is determined by different sets of parameters. Alternatively, when the synapse is not depressing, only one set of parameters determines the phase of activity at all frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302–306.

    Article  PubMed  Google Scholar 

  • Bartos M, Manor Y, Nadim F, Marder E, Nussbaum M(1999) Coordination of fast and slow rhythmic neuronal circuits. J. Neurosci. 19: 2247–2256.

    PubMed  Google Scholar 

  • Bose A, Manor Y, Nadim F (2001) Bistable oscillations arising from synaptic depression. SIAM J. Appl. Math. 62: 706–727.

    Google Scholar 

  • Buchholtz F, Golowasch J, Epstein I, Marder E (1992) Mathematical model of an identified stomatogastric ganglion neuron. J. Neurophysiol. 67: 332–340.

    PubMed  Google Scholar 

  • Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J. Physiol. (Lond.) 213: 21–30.

    PubMed  Google Scholar 

  • Connor JA, Walter D, McKowan R (1977) Neural repetitive firing: Modifications of the hodgkin-huxley axon suggested by experimental results from crustacean axons. Biophys. J. 18: 81–102.

    PubMed  Google Scholar 

  • DiCaprio R, Jordan G, Hampton T (1997) Maintenance of motor pattern phase relationships in the ventilatory system of the crab. J. Exp. Biol. 200: 963–974.

    PubMed  Google Scholar 

  • Ermentrout GB (2002) Simulating, Analyzing and Animating Dynamical Systems: A Gued to XPPAUT for Researchers and Students. SIAM, Philadelphia.

    Google Scholar 

  • Harris-Warrick R, Coniglio L, Barazangi N, Guckenheimer J, Gueron S (1995) Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15: 342–358.

    PubMed  Google Scholar 

  • Hess D, Manira A (2001) Characterization of a high-voltageactivated ia current with a role in spike timing and locomotor pattern generation. Proc. Nat. Acad. Sci. 98(9): 5276–5281.

    Article  PubMed  Google Scholar 

  • Hooper SL (1997a) Phase maintenance in the pyloric pattern of the lobster (panulirus interruptus) stomatogastric ganglion. J. Comput. Neurosci. 4: 191–205.

    Article  PubMed  Google Scholar 

  • Hooper SL (1997b) The pyloric pattern of the lobster (panulirus interruptus) stomatogastric ganglion comprises two phasemaintaining subsets. J. Comput. Neurosci. 4: 207–219.

    Article  PubMed  Google Scholar 

  • Hsiao C, Chandler S (1995) Characteristics of a fast transient outward current in guinea pig trigeminal motoneurons. Brain. Res. 695: 217–26.

    Article  PubMed  Google Scholar 

  • Laurent G, Wehr M, Davidowitz H (1996) Temporal representations of odors in an olfactory network. J. Neurosci. 16: 3837–3847.

    PubMed  Google Scholar 

  • Manor Y, Bose A, Booth V, Nadim F (2003) The contribution of synaptic depression to phase maintenance in a model rhythmic network. J. Neurophysiol. 90, 3513–3528.

    PubMed  Google Scholar 

  • Marder E, Calabrese R (1996) Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717.

    PubMed  Google Scholar 

  • Mishchenko EF, Rozov NK (1980). Differential Equations with Small Parameters and Relaxation Oscillators. Plenum Press, New York.

    Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnicle giant muscle fiber. Biophys. J. 35: 193–213.

    PubMed  Google Scholar 

  • O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3: 317–330.

    PubMed  Google Scholar 

  • Pearson K, Iles J (1970) Discharge patterns of coxal levator and depressor motoneurons of the cockroach, periplaneta americana. J. Exp. Biol. 52: 139–165.

    PubMed  Google Scholar 

  • Rinzel J, Ermentrout G(1997) In: C. Koch and I. Segev, eds., Methods in Neuronal Modeling: From Synapses to Networks, MIT Press, Cambridge, MA, pp. 135–170.

    Google Scholar 

  • Rush M, Rinzel J (1995) The potassium a-current, lowfiring rates and rebound excitation in hodgkin-huxley models. Bull. Math. Biol. 57: 899–929.

    PubMed  Google Scholar 

  • Skinner F, Mulloney B (1998) Intersegmental coordination of limb movements during locomotion: Mathematical models predict circuits that drive swimmeret beating.J. Neurosci. 18: 3831–3842.

    PubMed  Google Scholar 

  • Storm J (1990) Potassium currents in hippocampal pyramidal cells. Prog. Brain Res. 83: 161–187.

    PubMed  Google Scholar 

  • Thompson S (1977) Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol. 265: 465–488.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, A., Manor, Y. & Nadim, F. The Activity Phase of Postsynaptic Neurons in a Simplified Rhythmic Network. J Comput Neurosci 17, 245–261 (2004). https://doi.org/10.1023/B:JCNS.0000037685.71759.1a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000037685.71759.1a

Navigation