Skip to main content
Log in

Evolution of Coherent Interphase Boundaries during Annealing of Multilayers: A Monte Carlo Study

  • Published:
Interface Science

Abstract

Some properties of nanoscale multilayers, as for example the giant magnetoresistance, are expected to depend sensitively on the structure of the interphase boundaries. Recent experimental work aimed to elucidate the effect of annealing on the multilayer structure and properties. In the present study, thermally induced changes of coherent phase boundaries in multilayers with largely immiscible components were investigated by means of the Monte Carlo method based on a vacancy migration algorithm. Two limiting cases of the as-deposited state were considered: chemically sharp, ideally planar phase boundaries as well as strongly mixed, diffuse interfaces. Initially, a rapid demixing and sharpening of concentration profiles were observed. The morphological roughness of chemically nearly sharp interfaces was found to increase in the course of annealing at higher temperatures. The analysis of the evolving phase boundary topography suggests that the observed instability of thin layers of a few monolayers thickness is due to the development of a long-wavelength roughness. The Monte Carlo studies are compared with predictions of an analytical theory on surface roughening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Larson, A. Cerezo, P.H. Clifton, A.K. Petford-Long, R.L. Martens, T.F. Kelly, and N. Tabat, J. Appl. Phys. 89, 7517 (2001).

    Google Scholar 

  2. T.N. Todorov, E.Yu. Tsymbal, and D.G. Pettifor, Phys. Rev. B54, R12685 (1996).

    Google Scholar 

  3. M. Bobeth, M. Hecker, W. Pompe, C.M. Schneider, J. Thomas, A. Ullrich, and K. Wetzig, Z. Metallkde. 92, 810 (2000).

    Google Scholar 

  4. D.J. Larson, A.K. Petford-Long, A. Cerezo, and G.D.W. Smith, Acta Mater. 47, 4019 (1999).

    Google Scholar 

  5. D.J. Larson, A.K. Petford-Long, A. Cerezo, G.D.W. Smith, D.T. Foord, and T.C. Anthony, Appl. Phys. Lett. 73, 1125 (1998).

    Google Scholar 

  6. Ch. Rath, J.E. Prieto, S. Müller, R. Miranda, and K. Heinz, Phys. Rev. B55, 10791 (1997).

    Google Scholar 

  7. K. Rätzke, M.J. Hall, D.B. Jardine, W.C. Shih, R.E. Somekh, and A.L. Greer, J. Magn. Magn. Mater. 204,61(1999).

    Google Scholar 

  8. L. van Loyen, D. Elefant, D. Tietjen, C.M. Schneider, M. Hecker, and J. Thomas, J. Appl. Phys. 87, 4852 (2000).

    Google Scholar 

  9. M. Hecker, W. Pitschke, D. Tietjen, and C.M. Schneider, Thin Solid Films 411, 234 (2002).

    Google Scholar 

  10. A. Ullrich, M. Bobeth, and W. Pompe, Scripta Mater. 43, 887 (2000).

    Google Scholar 

  11. M. Bobeth, A. Ullrich, and W. Pompe, Defect Diffusion Forum 194–199, 1787 (2001).

    Google Scholar 

  12. M. Bobeth, A. Ullrich, and W. Pompe, Interface Sci. 9, 343 (2002).

    Google Scholar 

  13. C. Gente, M. Oehring, and R. Bormann, Phys. Rev. B48, 13244 (1993).

    Google Scholar 

  14. T. Abinandanan, F. Haider, and G. Martin, Acta Mater. 46, 4243 (1998).

    Google Scholar 

  15. P. Fratzl and O. Penrose, Phys. Rev. B50, 3477 (1994).

    Google Scholar 

  16. F. Soisson, A. Barbu, and G. Martin, Acta Mater. 44, 3789 (1996).

    Google Scholar 

  17. Y. Le Bouar and F. Soisson, Phys. Rev. B65, 094103 (2002).

    Google Scholar 

  18. Landolt-Börnstein, in Numerical Data and Functional Rela-tionships in Science and Technology, Atomic Defects in Metals, edited by H. Ullmaier (Springer-Verlag, Berlin, 1991), Vol. 25, p. 233.

    Google Scholar 

  19. N.A. Levanov, V.S. Stepanyuk, W. Hergert, D.I. Bazhanov, P.H. Dederichs, A. Katsnelson, and C. Massobrio, Phys. Rev. B61, 2230 (2000).

    Google Scholar 

  20. T.T. Rautiainen and A.P. Sutton, Phys. Rev. B59, 13681 (1999).

    Google Scholar 

  21. P. Nozieres, in Solids Far from Equilibrium, edited by C. Godreche (Cambridge University Press, Cambridge, 1992), p. 111.

    Google Scholar 

  22. J.L. Bocquet and C. Schmidt, Defect Diffusion Forum 194–199, 145 (2001).

    Google Scholar 

  23. M.R. Sorensen, Y. Mishin, and A.F. Voter, Phys. Rev. B62, 3658 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, A., Bobeth, M. & Pompe, W. Evolution of Coherent Interphase Boundaries during Annealing of Multilayers: A Monte Carlo Study. Interface Science 12, 249–257 (2004). https://doi.org/10.1023/B:INTS.0000028654.35852.ab

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000028654.35852.ab

Navigation