Skip to main content
Log in

A Nanoindentation Method for Measuring the Young Modulus of Superhard Materials Using a NanoScan Scanning Probe Microscope

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A new method for measuring the Young modulus using a NanoScan scanning probe microscope is proposed. This method is based on measurements of the oscillation frequency of a probe that is in contact with the surface as a function of the probe–surface separation, and allows the Young modulus to be determined on a scale of a few hundreds of nanometers for many objects, including superhard materials. The error of the Young-modulus measurements does not exceed 10%. The results obtained with this method agree well with the data obtained using the standard nanoindentation technique within the accuracy of measurements. The proposed method is actually nondestructive, since the probe penetration depth into the surface does not exceed several nanometers and the diameter of the contact area is about several tens of nanometers. Thus, it ensures correct measurements of the elastic properties of thin films and separate components in complex multiphase structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 1992, vol. 7, p. 1564.

    Google Scholar 

  2. Doerner, M.F. and Nix, W.D., J. Mater. Res., 1986, vol. 1, p. 601.

    Google Scholar 

  3. Yamanaka, K. and Nakano, S., Appl. Phys. 1998, vol. 66, p. 313.

    Google Scholar 

  4. DeVecchio, D. and Bhushan, B., Rev. Sci. Instrum., 1997, vol. 68, no. 12, p. 4498.

    Google Scholar 

  5. Heuberger, M., Dietler, G., and Schlapbach, L., Nanotechnology, 1994, vol. 5, p. 12.

    Google Scholar 

  6. Gracias, D.H. and Somorjai, G.A., Macromolecules, 1998, vol. 31, p. 1269.

    Google Scholar 

  7. Vairac, P. and Cretin, B., Appl. Phys., 1998, vol. 66, p. 227.

    Google Scholar 

  8. Fabre, A., Finot, E., Demoment, J., et al., Rev. Sci. Instrum.,, 2001, vol. 72, no. 10, p. 3914.

    Google Scholar 

  9. Vanlandingham, M.R., McKnight, S.H., Palmese, G.R., et al., J. Mater. Sci. Lett., 1996, vol. 16, p. 117.

    Google Scholar 

  10. Kageshima, M., Imayoshi, T., Yamada, H., et al., Jpn. J. Appl. Phys., 1997, vol. 36, p. 7354.

    Google Scholar 

  11. Gogolinskii, K.V. and Reshetov, V.N., Zavod. Lab. Diagn. Mater., 1998, vol. 64, no. 6, p. 30.

    Google Scholar 

  12. Blank, V., Popov, M., Pivovarov, G., et al., J. Mater. Res., 1997, vol. 12, p. 3109.

    Google Scholar 

  13. Blank, V. et al., Diamond Relat. Mater., 1999, vol. 8, p. 1531.

    Google Scholar 

  14. Grudzinskaya, S., Kosakovskaya, Z.Ya., Reshetov, V.N., and Chaban, A.A., Acoust. Phys., 2001, vol. 47, no. 5, p. 548.

    Google Scholar 

  15. Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, New York: McGraw-Hill, 1970, 3rd ed. Translated under the title Teoriya uprugosti, Shapiro, G.S., Ed., Moscow: Nauka, 1979.

    Google Scholar 

  16. Blank, V., Popov, M., Lvova, N., et al., Diamond Relat. Mater., 1998, vol. 7, p. 427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Useinov, A.S. A Nanoindentation Method for Measuring the Young Modulus of Superhard Materials Using a NanoScan Scanning Probe Microscope. Instruments and Experimental Techniques 47, 119–123 (2004). https://doi.org/10.1023/B:INET.0000017264.83566.69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INET.0000017264.83566.69

Keywords

Navigation