Skip to main content
Log in

Bacterial activities in the sediment of Lake Velencei, Hungary

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Velencei (Hungary) is one of the westernmost shallow soda lakes, extending from Eastern Europe to the Carpatian basin. The spatial and temporal distribution of the sediment microbiota, the metabolic potential of bacterial communities and the species composition of the genera Bacillus and Clostridium, as well as sulphate-reducing bacteria (SRB) were investigated regarding the close interactions between the lake sediment and the overlaying water column, the special water chemical parameters, and the extensive reed coverage of the lake. Aerobic microbial activities were tested with community-level physiological profiling (CLPP) using BIOLOG microplates. The quantification of the anaerobic fermentative and sulphate-reducing bacteria was done by the MPN (Most Probable Number) method. The cultivation of bacteria adapted to the special physico-chemical characteristics of the lake was carried out employing selective media. Multivariate analysis of CLPP data indicated that the microbial communities of the sediment separated from that of the water and showed seasonal variations of the utilised carbon sources. The results of the MPN demonstrated that the counts of the fermentative and sulphate-reducing bacteria in the reed rhizosphere were about one order higher than in the sediment. Among the isolated bacterial strains, a large number were characterised as facultative or obligate alkaliphilic and also moderately halophilic. The partial sequencing of 16S rDNA of the selected representatives resulted in species of aerobic bacteria, such as Bacillus pseudofirmus, B. halmapalus, B. cohnii, B. (Marinibacillus) marinus, and anaerobes, such as Clostridium putrificum – sporogenes, C. scatologenes, C. bifermentans, Desulfotomaculum guttoideum, Desulfovibrio alcoholivorans, and Desulfovibrio burkinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ács, É., K. Buczkó & Gy. Lakatos, 1994. Changes in the mosaiclike water surfaces of Lake Velencei as reflected by reed periphyton studies. Studia Botanica Hungarica 25: 5–19.

    Google Scholar 

  • Ács, É., A. K. Borsodi, J. Makk, P. Molnár, A. Mózes, A. Rusznyák, M. N. Reskóné & K. T. Kiss, 2003. Algological and bacteriological investigations on reed periphyton in Lake Velencei, Hungary. Hydrobiologia 506–509: 549–557.

    Article  Google Scholar 

  • Andrews, J. H. & R. F. Harris, 2000. The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38: 145–180.

    Article  PubMed  Google Scholar 

  • Armstrong, J., F. Afreen-Zobayed & W. Armstrong, 1996. Phragmites die-back: sulphide-and acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems. New Phytol. 134: 601–614.

    Article  CAS  Google Scholar 

  • Brune, A., P. Frenzel & H. Cypionka, 2000. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol. Rev. 24: 691–700.

    PubMed  CAS  Google Scholar 

  • Buczkó, K. & É. Ács, 1998. Comparison of succession of reed periphyton in a degraded and in an undisturbed part of a shallow lake (Lake Velencei, Hungary, Central Europe). Verh. int. Ver. theor. angew. Limnol. 26: 1674–1676.

    Google Scholar 

  • Duckworth, A. W.,W. D. Grant, B. E. Jones & R. van Steenbergen, 1996. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecol. 19: 181–191.

    Article  CAS  Google Scholar 

  • Garland, J. L., 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 24: 289–300.

    Article  CAS  Google Scholar 

  • Gordon, R. E.,W. C. Hayes & C. H. Pang, 1973. The genus Bacillus. Agricultural Handbook No. 427. Washington.

  • Greenberg, A. E., L. S. Clesceri & A. D. Eaton (eds), 1992. Standard Methods for the Examination of Water and Wastewater: Estimation of Bacterial Density. American Public Health Association, Washington: 9–49.

    Google Scholar 

  • Harper, D. M., R. B. Childress, M. M. Harper, R. R. Boar, P. Hickley, S. C. Mills, N. Otieno, T. Drane, E. Vareschi, O. Nasirwa, W. E. Mwatha, J. P. E. C. Darlington & X. Escuté-Gasulla, 2003. Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia 506–509

  • Hines, M. E., R. S. Evans, B. R. S. Genthner, S. G. Willis, S. Friedman, J. N. Rooney-Varga & R. Devereux, 1999. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol. 65: 2209–2216.

    PubMed  CAS  Google Scholar 

  • Holmer, M., F. O. Andersen, S. L. Nielsen & H. T. S. Boschker, 2001. The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquat. Bot. 71: 1–17.

    Article  CAS  Google Scholar 

  • Horikoshi, K., 1996. Alkaliphiles – from an industrial point of view. FEMS Microbiol. Rev. 18: 259–270.

    CAS  Google Scholar 

  • Jones, B. E., W. D. Grant, A. W. Duckworth & G. G. Owenson, 1998. Microbial diversity of soda lakes. Extremophiles 2: 191– 200.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, S., Z. G. Banhidi & A. C. Albersson, 1988. Identification and characterization of alkali-tolerant Clostridia isolated from biodeteriorated casein-containing building materials. Appl. Microbiol. Biotechnol. 28: 305–310.

    CAS  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Molecular Evol. 16: 111–120.

    Article  CAS  Google Scholar 

  • Krulwich, T. A. & A. A. Guffanti, 1989. Alkalophilic bacteria. Annu. Rev. Microbiol. 43: 435–463.

    Article  PubMed  CAS  Google Scholar 

  • Leshine, S. B. & E. Canale-Parola, 1983. Mesophilic cellulolytic Clostridia from freshwater environments. Appl. Environ. Microbiol. 46: 728–737.

    Google Scholar 

  • Madiak, B. L., G. J. Olsen, N. Larsen, R. Overbeek, M. J. Mc-Caughey & C. R. Woese, 1996. The Ribosomal Database Project (RDP). Nucleic Acids Research 24: 82–85.

    Article  Google Scholar 

  • Nielsen, P, D. Fritze & F. G. Priest, 1995. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141: 1745–1761.

    Article  CAS  Google Scholar 

  • Nixdorf, B. & J. Jander, 2003. Bacterial activities in shallow lakes – A comparison between extremely acidic and alkaline eutrophic hard water lakes. Hydrobiologia 506–509: 697–705.

    Article  Google Scholar 

  • Odom, J. M. & R. Singleton, 1993. The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York.

    Book  Google Scholar 

  • Ostendorp, W., M. Dienst & K. Schmieder, 2003. Disturbance and rehabilitation of lakeside Phragmites reeds following an extreme flood in Lake Constance, Germany. Hydrobiologia 506–509: 687–695.

    Article  Google Scholar 

  • Podani, J., 2001. SYN-TAX 2000 Computer programs for data analysis in ecology and systematics (User's Manual).

  • Postgate, J. R., 1984. The Sulphate-Reducing Bacteria, 2nd edn. Cambridge University Press, London.

    Google Scholar 

  • Rainey, F. A.,W. N. Rainey, R.M. Kroppenstedt & E. Stackebrandt, 1996. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Sys. Bacteriol. 46: 1088–1092.

    Article  CAS  Google Scholar 

  • Rüger, H. J., D. Fritze & C. Spröer, 2000. New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int. J. Sys. Evol. Microbiol. 50: 1305–1313.

    Article  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biol. Evol. 4: 406–425.

    CAS  Google Scholar 

  • Smalla, K., U. Wachtendorf, H. Heuer, W. T. Liu & L. Forney, 1998. Analysis of BIOLOG GN substrate utilisation patterns by microbial communities. Appl. Environ. Microbiol. 64: 1220–1225.

    PubMed  CAS  Google Scholar 

  • Spanka, R. & D. Fritze, 1993. Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int. J. Sys. Bacteriol. 43: 150–156.

    Article  CAS  Google Scholar 

  • Spring, S., R. Schulze, J. Overmann & K. H. Schleifer, 2000. Identification and characterisation of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol. Rev. 24: 573–590.

    Article  PubMed  CAS  Google Scholar 

  • Strunk, O. & W. Ludwig, 1996. ARB: A software environment for sequence data. Technical University of Munich, Germany. (http://www.biol.chemie.tu-muenchen.de/pub/ARB/).

    Google Scholar 

  • Weimer, P. J. & J. G. Zeikus, 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautothrophicum. Appl. Environ. Microbiol. 33: 289–297.

    PubMed  CAS  Google Scholar 

  • Wellsbury, P., R. A. Herbert & R. J. Parkes, 1996. Bacterial activity and production in near-surface estuarine and freshwater sediments. FEMS Microbiol. Ecol. 19: 203–214.

    Article  CAS  Google Scholar 

  • Yang, C. H. & D. E. Crowley, 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66: 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J. H., N. Weiss, K. C. Lee, I. S. Lee, K. H. Kang & Y. H. Park, 2001. Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int. J. Sys. Evol. Microbiol. 51: 2087–2093.

    Article  CAS  Google Scholar 

  • Zak, J. C., M. R. Willig, D. L. Moorhead & H. G. Wildman, 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26: 1101–1108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsodi, A.K., Vladár, P., Cech, G. et al. Bacterial activities in the sediment of Lake Velencei, Hungary. Hydrobiologia 506, 721–728 (2003). https://doi.org/10.1023/B:HYDR.0000008586.30395.f2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008586.30395.f2

Navigation