Skip to main content
Log in

Genetic Differentiation of White-Spotted Charr (Salvelinus leucomaenis) Populations After Habitat Fragmentation: Spatial–Temporal Changes in Gene Frequencies

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Freshwater fishes that have been isolated by artificial dams have become models for studying the effects of recent barriers on genetic variation and population differentiation. In this study, we examined the genetic structure of 11 populations of white-spotted charr (Salvelinus leucomaenis) by using polymorphic microsatellite loci. Reduced genetic diversity, expressed as the number of alleles and the expected heterozygosity, was observed in all above-dam relative to below-dam populations. Highly significant genetic differentiation (F ST) was found for all pairwise comparisons among populations, with F ST-values ranging from 0.023 to 0.639. Both multiple regression analysis and a randomization test revealed that genetic differentiation above and below dams was negatively related to the habitat size of above-dam populations, and was positively related to the time period of isolation. This study is one of the few attempts to predict the population genetic structure of such variable spatial–temporal scales. We conclude that differences in genetic structure above and below dams are related to recent historical population size, whereby sites with a lower effective number of adults are more prone to temporal stochasticity in gene frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angers B, Bernatchez L, Angers A, Desgroseillers L (1995) Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. J. Fish Biol., 47, 177–185.

    Google Scholar 

  • Angers B, Magnan P, Angers A, Desgroseillers L (1999) Canonical correspondence analysis for estimating spatial and environmental effect on microsatellite gene diversity in brook charr (Salvelinus fontinalis). Mol. Ecol., 8, 1043–1054.

    Google Scholar 

  • Bachman RA (1984) Foraging behavior of free-living wild and hatchery brown trout in a stream. Trans. Am. Fish. Soc., 113, 1–32.

    Article  Google Scholar 

  • Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol. Evol., 13, 202–206.

    Google Scholar 

  • Bouza C, Arias J, Castro J, Sanchez L, Martinez P (1999) Genetic structure of brown trout, Salmo trutta L., at the southern limit of the distribution range of the anadromous form. Mol. Ecol., 8, 1991–2001.

    PubMed  Google Scholar 

  • Britten HB (1996) Meta-analysis of the association between multilocus heterozygosity and fitness. Evolution, 50, 2158–2164.

    Google Scholar 

  • Buri P (1956) Gene frequency in small populations of mutant Drosophila. Evolution, 10, 367–402.

    Google Scholar 

  • Carlsson J, Nilsson J (2000) Population genetic structure of brown trout (Salmo trutta L.) within a northern boreal forest stream. Hereditas, 132, 173–181.

    PubMed  Google Scholar 

  • Castric V, Bonney F, Bernatchez L (2001) Landscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis. Evolution, 55, 1016–1028.

    Google Scholar 

  • David P (1998) Heterozygosity-tness correlations: new perspectives on old problems. Heredity, 80, 531–537.

    PubMed  Google Scholar 

  • Elliott JM (1994) Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.

    Google Scholar 

  • Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic di. erentiation in brown trout (Salmo trutta). Mol. Ecol., 7, 339–353.

    PubMed  Google Scholar 

  • Falconer DS (1989) Introduction to Quantitative Genetics. Longman Scientific and Technical, London.

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv. Biol., 10, 1500–1508.

    Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol. Ecol., 9, 615–628.

    PubMed  Google Scholar 

  • Giles BE, Goudet J (1997) Genetic diffrentiation in Silene dioica metapopulations: estimation of spatiotemporal effects in a successional plant species. Am. Nat., 149, 507–526.

    Google Scholar 

  • Gore JA (1996) Discharge measurements and streamflow analysis. In: Methods in Stream Ecology (eds. Hauer FR, Lamberti GA), pp. 53–74. Academic Press, California.

    Google Scholar 

  • Goudet J (1999) PCAGEN ver. 1. 2. Population Genetics Laboratory, University of Lausanne, Lausanne, Switzerland.

    Google Scholar 

  • Hansen MM, Loeschcke V (1996) Temporal variation in mitochondrial DNA haplotype frequencies in a brown trout (Salmo trutta L.) population that shows stability in nuclear allele frequencies. Evolution, 50, 454–457.

    Google Scholar 

  • Hansen MM, Mensberg KLD (1998) Genetic differentiation and relationship between genetic and geographical distance in Danish sea trout (Salmo salar L.) populations. Heredity, 81, 493–504.

    Google Scholar 

  • Hébert C, Danzman RG, Jones MW, Bernatchez L (2000) Hydrography and population genetic structure in brook charr (Salvelinus fontinalis, Mitchill) from eastern Canada. Mol. Ecol., 9, 971–982.

    PubMed  Google Scholar 

  • Hedrick PW, Gilpin ME (1997) Genetic effective size of a metapopulation. In: Metapopulation Biology: Ecology, Genetics, and Evolution (eds. Hanski IA, Gilpin ME), pp. 165–181. Academic Press, California.

    Google Scholar 

  • Hernandez-Martich JD, Smith MH (1997) Downstream gene flow and genetic structure of Gambusia holbrooki (eastern mosquito sh) populations. Heredity, 79, 295–301.

    Google Scholar 

  • Kimura M, Crow JF (1963) On the maximum avoidance of inbreeding. Gen. Res., 4, 399–415.

    Google Scholar 

  • Meffe GK, Vrijenhoek RC (1988) Conservation genetics in the management of desert fishes. Conserv. Biol., 2, 157–169.

    Google Scholar 

  • Morita K, Takashima Y (1998) Effect of female size on fecundity and egg size in white-spotted charr: comparison between sea-run and resident forms. J. Fish Biol., 53, 1140–1142.

    Google Scholar 

  • Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conserv. Biol., 16, 1318–1323.

    Google Scholar 

  • Morita K, Yamamoto S, Hoshino N (2000) Extreme life history change of white-spotted char (Salvelinus leucomaenis) after damming. Can. J. Fish. Aquat. Sci., 57, 1300–1306.

    Google Scholar 

  • Nakano S (1995) Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red-spotted masu salmon in a natural habitat. J. Anim. Ecol., 64, 75–84.

    Google Scholar 

  • Nakano S, Kitano F, Maekawa K (1996) Potential fragmentation and loss of the thermal habitats for charrs in the Japanese archipelago due to climatic warming. Freshw. Biol., 36, 711–722.

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Google Scholar 

  • Neraas LP, Spruell P (2001) Fragmentation of riverine systems: the genetic effects of dams on bull trout (Salvelinus confluentus) in the Clark Fork River system. Mol. Ecol., 10, 1153–1164.

    PubMed  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1999) Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution, 53, 261–268

    Google Scholar 

  • O'Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci., 53, 2292–2298.

    Google Scholar 

  • Quattro JM, Vrijenhoek RC (1989) Fitness differences among remnant populations of endangered Sonoran topminnow. Science, 245, 976–978.

    PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 3. 1): population genetics software for exact tests and ecumenism. J. Heredity, 86, 248–249.

    Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution, 43, 223–225.

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN ver. 2.000: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, Department of Anthropology and Ecology, University of Geneva, Geneva, Switzerland.

    Google Scholar 

  • Shikano T, Chiyokubo T, Taniguchi N (2001) Temporal changes in allele frequency, genetic variation and inbreeding depression in small populations of the guppy, Poecilia reticulata. Heredity, 86, 153–160.

    PubMed  Google Scholar 

  • Shimoda K, Nakano S, Yamamoto S (2002) Landlocking of anadromous white-spotted charr Salvelinus leucomaenis by damming. Jpn. J. Ichthyol., 49, 25–32.

    Google Scholar 

  • Templeton AR, Robertson RJ, Brisson J, Strasburg J (2001) Disrupting evolutionary process: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks. Proc. Natl. Acad. Sci. USA, 98, 5426–5432.

    PubMed  Google Scholar 

  • Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations assessed by micro-satellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol. Ecol., 8, 169–179.

    Google Scholar 

  • Vrijenhoek RC (1994) Genetic diversity and tness in small populations. In: Conservation Genetics (eds. Loeschcke V, Tomiuk J, Jain SK), pp. 37–53. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Yamamoto S, Nakano S (1996) Growth and development of a bimodal length–frequency distribution during smolting in a wild population of white-spotted charr in northern Japan. J. Fish Biol., 48, 68–79.

    Google Scholar 

  • Yamamoto S, Morita K, Goto A (1999) Geographic variations in life-history characteristics of white-spotted charr (Salvelinus leucomaenis). Can. J. Zool., 77, 871–878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, S., Morita, K., Koizumi, I. et al. Genetic Differentiation of White-Spotted Charr (Salvelinus leucomaenis) Populations After Habitat Fragmentation: Spatial–Temporal Changes in Gene Frequencies. Conservation Genetics 5, 529–538 (2004). https://doi.org/10.1023/B:COGE.0000041029.38961.a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COGE.0000041029.38961.a0

Navigation