Skip to main content
Log in

A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic decomposition of ammonia has recently been proposed as a possible source of hydrogen for fuel cells. However, the ruthenium catalyst is costly. Although there exist several correlations for catalytic activity that suggest potentially useful alternatives, the particular candidates differ. The present work seeks to determine experimentally which, if any, of these correlations correctly predicts suitable substitutes. The experiments examine 13 different metallic catalysts from numerous places within the Periodic Table, and show that the activity varies in the order Ru>Ni>Rh>Co>Ir>Fe≫Pt>Cr>Pd>Cu≫Te, Se, Pb. The results suggest that nitrogen desorption limits the rate on Fe, Co, and Ni, whereas N–H bond scission limits the rate on other metals such as Rh, Ir, Pd, Pt, and Cu. Conventional single-parameter correlations of activity generally fail to predict the results because the rate-determining step changes across the data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.V. Choudhary, A.K. Santra, C. Sivadinarayana, B.K. Min, C.-W. Yi, K. Davis and D.W. Goodman, Catal. Lett. 77 (2001) 1.

    Google Scholar 

  2. J.C. Ganley, E.G. Seebauer and R.I. Masel,AIChE J. in press.

  3. A.S. Chellappa, C.M. Fischer and W.J. Thomson, Appl. Catal. A: Gen. 227 (2002) 231.

    Google Scholar 

  4. D.G. Löffler and L.D. Schmidt, J. Catal. 41 (1976) 440.

    Google Scholar 

  5. G. Papapolymerou and V. Bontozoglou, J. Mol. Catal. A 120, 167(1997).

    Google Scholar 

  6. G. Papapolymerou and L.D. Schmidt, Langmuir 1 (1985) 488.

    Google Scholar 

  7. G. Ertl and M. Huber, J. Catal. 61 (1980) 537.

    Google Scholar 

  8. R.W. McCabe, J. Catal. 79 (1983) 445.

    Google Scholar 

  9. A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver and J.K. Nørskov, J. Mol. Catal. A: Chem. 115 (1997) 421.

    Google Scholar 

  10. J.K. Nørskov, T. Bligaard, S. Bahn, L.H. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl and C.J.H. Jacobsen, J. Catal. 209 (2002) 275.

    Google Scholar 

  11. B. Hammer and J.K. Nørskov, Adv. Catal. 45 (2000) 71.

    Google Scholar 

  12. G.C.A. Schuit, L.L. Van Reijen and W.M.H. Sachtler in: Actes International Congres Catalyse, Paris, Vol. 1, pp. 893-915, discussion 916-18, 1961.

    Google Scholar 

  13. W.J.M. Rootsaert and W.H.M. Sachtler, Zeitschrift für Physikalische Chemie, 26 (1960) 16.

    Google Scholar 

  14. W.M.H. Sachtler and J. Fahrenfort in: Proceedings of the 5th International Congress on Catalysis, 1958.

  15. K. Tanaka and K. Tamaru, J. Catal. 2 (1963) 366.

    Google Scholar 

  16. K. Tanaka and K. Tamaru, Kinetika i Kataliz 7 (1966) 242.

    Google Scholar 

  17. C.J.H. Jacobsen, S. Dahl, A. Boisen, B.S. Clausen, H. Topsøe, A. Logadottir and J.K. Nørskov, J. Catal. 205 (2002) 382.

    Google Scholar 

  18. C.J.H. Jacobsen, S. Dahl, B.S. Clausen, S. Bahn, A. Logadottir and J.K. Nørskov, J. Am. Chem. Soc. 123 (2001) 8404.

    Google Scholar 

  19. A. Balandin, Adv. Catal. 10 (1958) 96.

    Google Scholar 

  20. A. Balandin, Adv. Catal. 19 (1969) 1.

    Google Scholar 

  21. Y. Takasu and Y. Matsuda, Electrochim. Acta 21 (1976) 133.

    Google Scholar 

  22. M.C.J. Bradford and M.A. Vannice, Catal. Today 50 (1999) 87.

    Google Scholar 

  23. A. Logadottir, T.H. Rod, J.K. Nørskov, B. Hammer, S. Dahl and C. Jacobsen, J. Catal. 197 (2001) 229.

    Google Scholar 

  24. S. Dahl, A. Logadottir, C.J.H. Jacobsen and J.K. Nørskov, Appl. Catal. A: Gen. 222 (2001) 19.

    Google Scholar 

  25. K. Aika and K. Tamaru, Ammonia: Catalysis and Manufacture, (Springer-Verlag, Berlin, 1995), p. 103.

    Google Scholar 

  26. P. Blowers and R. Masel, J. Phys. Chem. A, 103 (1999) 7047.

    Google Scholar 

  27. P. Blowers and R. Masel, AIChE J. 45 (1999) 1794.

    Google Scholar 

  28. J. Gohndrone and R. Masel, Surface Sci. 209 (1988) 44.

    Google Scholar 

  29. R.I. Masel, Chemical Kinetics and Catalysis (Wiley, New York, 2001), p. 880.

    Google Scholar 

  30. S.U.M. Khan, Appl. Phys. Commun. 6 (1986) 1.

    Google Scholar 

  31. M.C.J. Bradford, P.E. Fanning and M.A. Vannice, J. Catal. 172 (1997) 479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.I. Masel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganley, J., Thomas, F., Seebauer, E. et al. A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia. Catalysis Letters 96, 117–122 (2004). https://doi.org/10.1023/B:CATL.0000030108.50691.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000030108.50691.d4

Navigation