Skip to main content
Log in

Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract predatory mites (Neoseiulus cucumeris). Since our aim was to demonstrate such odours and not their relevance under soil conditions, the experiments were carried out using a classic Y-tube olfactometer in which the predators moved on a Y-shaped wire in open air. We found that food-deprived female predators can discriminate between odours from infested bulbs and odours from uninfested bulbs or artificially wounded bulbs. No significant difference in attractiveness to predators was found between clean bulbs and bulbs either wounded 30 min or 3 h before the experiment. These results indicate that it may not be simply the wounding of the bulbs, but rather the feeding by rust mites, which causes the bulb to release odours that attract N. cucumeris. Since bulbs are belowground plant structures, the olfactometer results demonstrate the potential for odour-mediated interactions in the soil. However, their importance in the actual soil medium remains to be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Conijn C.G.M., van Aartrijk J. and Lesna I. 1996. Flower bulbs. In: Lindquist E.E., Sabelis M.W. and Bruin J. (eds) Eriophyoid Mites — Their Biology, Natural Enemies and Control. World Crop Pest Series. Vol. 6. Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 651–659.

    Google Scholar 

  • De Moraes G.J., McMurtry J.A. and Denmark H.A. 1986. A Catalog of the Mite Family Phytoseiidae 1986. EMBRAPA-DDT, Brasilia, 353 pp.

    Google Scholar 

  • Dicke M. and Groeneveld A. 1986. Hierarchical structure in kairomone preference of the predatory mite Amblyseius potentillae: dietary component indispensable for diapause induction affects prey location behaviour. Ecol. Entomol. 11: 131–138.

    Google Scholar 

  • Dicke M. and Sabelis M.W. 1988. How plants obtain predatory mites as bodyguards. Netherlands J. Zool. 38: 148–165.

    Article  Google Scholar 

  • Dicke M. and Vet L.E.M. 1999. Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore. In: Olff H., Brown V.K. and Drent R.H. (eds) Herbivores: Between Plants and Predators Blackwell Science, Oxford, pp. 109–166,483-520.

    Google Scholar 

  • Dicke M., Sabelis M.W. and de Jong M. 1988. Analysis of prey preference in phytoseiid mites by using an olfactometer, predation models and electrophoresis. Exp. Appl. Acarol. 5: 225–241.

    Article  Google Scholar 

  • Dicke M., Sabelis M.W., Takabayashi J., Bruin J. and Posthumus M.A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J. Chem. Ecol. 16: 3091–3118.

    Article  CAS  Google Scholar 

  • Dicke M., van Baarlen P., Wessels R. and Dijkman H. 1993. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore — extraction of endogenous elicitor. J. Chem. Ecol. 19: 581–599.

    Article  CAS  Google Scholar 

  • Drukker B., Scutareanu P. and Sabelis M.W. 1995. Do anthocorid predators respond to synomones from Psylla-infested pear trees in field conditions? Entomol. Exp. Appl. 77: 193–203.

    Article  Google Scholar 

  • Kessler A. and Baldwin I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Neveu N., Grandgirard J., Nenon J.P. and Cortesero A.M. 2002. Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J. Chem. Ecol. 28: 1717–1732.

    Article  PubMed  CAS  Google Scholar 

  • Paré P.W., Alborn H.T. and Tumlinson J.H. 1998. Concerted biosynthesis of an insect elicitor of plant volatiles. Proc. Nat. Acad. Sci. USA 95: 13971–13975.

    Article  PubMed  Google Scholar 

  • Sabelis M.W. 1996. Phytoseiidae. In: Lindquist E.E., Sabelis M.W. and Bruin J. (eds) Eriophyoid Mites — Their Biology, Natural Enemies and Control. World Crop Pest Series Vol. 6. Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 427–456.

    Google Scholar 

  • Sabelis M.W. and Bruin J. 1996. Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist E.E., Sabelis M.W. and Bruin J. (eds) Eriophyoid Mites — Their Biology, Natural Enemies and Control. World Crop Pest Series Vol. 6. Elsevier Science Publishers Amsterdam, The Netherlands, pp. 329–366.

    Google Scholar 

  • Sabelis M.W. and van de Baan H.E. 1983. Location of distant spider-mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi (Acari: Phytoseiidae, Tetranychidae). Entomol. Exp. Appl. 33: 303–314.

    Google Scholar 

  • Sabelis M.W., van Baalen M., Bakker F.M., Bruin J., Drukker B., Egas M., Janssen A., Lesna I., Pels B., van Rijn P.C.J. and Scutareanu P. 1999. Evolution of direct and indirect plant defence against herbivorous arthropods. In: Olff H., Brown V.K. and Drent R.H. (eds) Herbivores: Between Plants and Predators Blackwell Science, Oxford, pp. 109–166.

  • Shimoda T., Takabayashi J., Ashihara W. and Takafuji A. 1997. Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J. Chem. Ecol. 23: 2033–2048.

    Article  CAS  Google Scholar 

  • Sokal R.R. and Rohlf F.J. 1997. Biometry. Freeman and Company, New York.

    Google Scholar 

  • Turlings T.C.J. and Tumlinson J.H. 1992. Systemic release of chemical signals by herbivore-injured corn. Proc. Nat. Acad. Sci. USA 89: 8399–8402.

    Article  PubMed  CAS  Google Scholar 

  • Turlings T.C.J., Tumlinson J.H. and Lewis W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253.

    CAS  PubMed  Google Scholar 

  • Turlings T.C.J., McCall P.J., Alborn H.T. and Tumlinson J.H. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19: 411–425.

    Article  CAS  Google Scholar 

  • van Tol R.W.H.M., van der Sommen A.T.C., Boff M.I.C., van Bezooijen J., Sabelis M.W. and Smits P.H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4: 292–294.

    Article  Google Scholar 

  • Wäckers F.L. and Bezemer T.M. 2003. Root herbivory induces an above-ground indirect defence. Ecol. Lett. 6: 9–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.W. Sabelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aratchige, N., Lesna, I. & Sabelis, M. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exp Appl Acarol 33, 21–30 (2004). https://doi.org/10.1023/B:APPA.0000030011.66371.3f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPA.0000030011.66371.3f

Navigation