Skip to main content
Log in

Load Dependent Diastolic Dysfunction in Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Congestive heart failure may result from cardiovascular overload, from systolic or from diastolic dysfunction. Diastolic left ventricular dysfunction may result from structural resistance to filling such as induced by pericardial constraint, right ventricular compression, increased chamber stiffness (hypertrophy) and increased myocardial stiffness (fibrosis). A distinct and functional etiology of diastolic dysfunction is slow and incomplete myocardial relaxation. Relaxation may be slowed by pathological processess such as hypertrophy, ischemia and by asynchronous left ventricular function. The present contribution analyses the occurrence of slow and incomplete myocardial relaxation in response to changes in systolic pressure and in response to changes in venous return. The regulation of myocardial relaxation by load is critically dependent on the transition from myocardial contraction to relaxation, which occurs in dogs when 82% of peak isovolumetric pressure has developed or at a relative load of 0.82. This corresponds to early ejection in normal hearts, but is situated even before aortic valve opening in severely diseased hearts. When load is developed beyond this transition, relaxation becomes slow and even incomplete. This is load dependent diastolic dysfunction. Load dependent diastolic dysfunction occurs in normal hearts facing heavy afterload and in severely diseased hearts even with normal hemodynamic parameters. This dysfunction should contribute to elevating filling pressures in most patients with severe congestive heart failure. This dysfunction can be reverted by decreasing systolic pressures or by decreasing venous return. Load dependent diastolic dysfunction gives us an additional reason to agressively treat CHF patients with diuretics and vasodilators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grossmann W. Diastolic dysfunction in congestive heart failure. N Engl J Med 1991;325:1557–1564.

    Google Scholar 

  2. Lorell BH. Significance of diastolic dysfunction in the heart. Annu Rev Med 1991;42:411–436.

    Google Scholar 

  3. Leite-Moreira AF and Gillebert TC. Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation 1994;90:2481–2491.

    Google Scholar 

  4. Parmley WW, Sonnenblick EH. Relation between mechanics of contraction and relaxation in mammalian cardiac muscle. Am J Physiol 1969;216:1084–1091.

    Google Scholar 

  5. Wiegner AW, Bing OHL. Isometric relaxation of rat myocardium at end-systolic muscle length. Circ Res 1978;43:865–869.

    Google Scholar 

  6. Brutsaert DL, De Clerck NM, Goethals MA, Housmans PR. Relaxation of ventricular cardiac muscle. J Physiol 1978;283:469–480.

    Google Scholar 

  7. Noble MI. The contribution of blood momentum to left ventricular ejection in the dog. Circ Res 1968;23:663–670.

    Google Scholar 

  8. Gillebert TC, Sys SU, and Brutsaert DL. Influence of loading patterns on peak length-tension relation and on relaxation in cardiac muscle. J Am Coll Cardiol 1989;13:483–489.

    Google Scholar 

  9. Hori M, Kitakaze M, Ishida Y, Fukunami M, Kitabatake A, Inoue M, Kamada T, Yue DT. Delayed end ejection increases isovolumic relaxation rate in isolated perfused canine hearts. Circ Res 1991;68:300–308.

    Google Scholar 

  10. Zile MR, Gaasch WH. Load-dependent left ventricular relaxation in conscious dogs. Am J Physiol 1991;261:H691–H699.

    Google Scholar 

  11. Gillebert TC and Lew WY. Influence of the systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol 1991;261:H805–H813.

    Google Scholar 

  12. Prabhu SD. Load sensitivity of left ventricular relaxation in normal and failing hearts:evidence of a nonlinear biphasic response. Cardiovasc Res 1999;43:354–363.

    Google Scholar 

  13. Leite-Moreira AF, Correia-Pinto J, De Hert SG, Gillebert TC. Nonlinear biphasic relationship between time constant tau and load. Cardiovasc Res 2000;45:1065–1067.

    Google Scholar 

  14. Solomon SB, Nikolic SD, Frater RW, Yellin EL. Contraction-relaxation coupling:determinants of the onset of diastole. Am J Physiol 1999;277:H23–H27.

    Google Scholar 

  15. Leite-Moreira AF, Gillebert TC. Myocardial relaxation in regionally stunned left ventricle. Am J Physiol 1996;270:H509–H517.

    Google Scholar 

  16. Leite-Moreira AF, Correia-Pinto J, Gillebert TC. Load dependence of left ventricular contraction and relaxation. Effects of caffeine. Basic Res Cardiol 1999;94:284–293.

    Google Scholar 

  17. Leite-Moreira AF, Correia-Pinto J, Gillebert TC. Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction. Cardiovasc Res 1999;43:344–353.

    Google Scholar 

  18. Ishizaka S, Asanoi H, Wada O, Kameyama T, Inoue H. Loading sequence plays an important role in enhanced load sensitivity of left ventricular relaxation in conscious dogs with tachycardia-induced cardiomyopathy. Circulation 1995;92:3560–3567.

    Google Scholar 

  19. Gillebert TC, Leite-Moreira AF, De Hert SG. Relaxation-systolic pressure relation. A load independent assessment of left ventricular contractility. Circulation 1997;95:745–752.

    Google Scholar 

  20. Eichhorn EJ, Willard JE, Alvarez L, Kim AS, Glamann DB, Risser RC, Grayburn PA. Are contraction and relaxation coupled in patients with and without heart failure? Circulation 1992;85:2132–2139.

    Google Scholar 

  21. Lew WY. Time-dependent increase in left ventricular contractility following acute volume loading in the dog. Circ Res 1988;63:635–647.

    Google Scholar 

  22. Gillebert TC, Raes DF. Preload, length-tension relation and isometric relaxation in cardiac muscle. Am J Physiol 1994;267:H1872–H1879.

    Google Scholar 

  23. Blaustein AS, Gaasch WH. Myocardial relaxation. VI. Effects of beta-adrenergic tone and asynchrony on LV relaxation rate. Am J Physiol 1983;244:H417–H422.

    Google Scholar 

  24. Ross JJr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Progress Cardiovasc Dis 1976;18:255–264.

    Google Scholar 

  25. Lew WY. Asynchrony and ryanodine modulate loaddependent relaxation in the canine left ventricle. Am J Physiol 1995;268:H17–H24.

    Google Scholar 

  26. Gillebert TC, Lew WY. Nonuniformity and volume loading independently influence isovolumic relaxation rates. Am J Physiol 1989;257:H1927–H1935.

    Google Scholar 

  27. Gaasch WH, Blaustein AS, Andrias CW, Donahue RP, Avitall B. Myocardial relaxation II:Hemodynamic determinants of rate of LV isovolumic pressure decline. Am J Physiol 1980;239:H1–H6.

    Google Scholar 

  28. Sensaki H, Fetics B, Chen-Huan C, Kass DA. Comparison of ventricular pressure relaxation assessments in human heart failure. J Am Coll Cardiol 1999;34:1529–1536.

    Google Scholar 

  29. Choong CY, Abascal VM, Thomas JD, Guerrero JL, McGlew S, Weyman AE. Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation 1988;78:672–683.

    Google Scholar 

  30. Yellin EL, Hori M, Yoram C, Sonnenblick EH, Gabbay S, Frater RW. Left ventricular relaxation in the filling and nonfilling intact canine heart. Am J Physiol 1986;250:H620–H629.

    Google Scholar 

  31. Pouleur H, Karliner JS, Lewinter MM, Covell JW. Diastolic viscous properties of the intact left ventricle. Circ Res 1979;45:410–419.

    Google Scholar 

  32. De Hert SG, Rodrigus IE, Haenen LR, De Mulder PA, Gillebert TC. Recovery of systolic and diastolic left ventricular function early after cardiopulmonary bypass. Anesthesiology 1996;85:1063–1075.

    Google Scholar 

  33. Prendergast BD, Sagash VF, Shah AM. Basal release of NO augments the Frank-Starling response in the isolated heart. Circulation 1997;96:1320–1329.

    Google Scholar 

  34. Paulus WJ, Vantrimpont PJ, Shah AM. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Circulation 1994;89:2070–2078.

    Google Scholar 

  35. De Mulder PA, De Hert SG, Van Kerckhoven RJ, Adriaensen HF, Gillebert TC. Sodium nitroprusside enhances in vivo left ventricular function in betaadrenergically stimulated rabbit hearts. Cardiovasc Res 1998;38:133–139.

    Google Scholar 

  36. Pak PH, Maughan WL, Gaughman KL, Kass DA. Marked discordance between dynamic and passive diastolic pressure-volume relations in idiopathic hypertrophic cardiomyopathy. Circulation 1996;94:52–60.

    Google Scholar 

  37. Krogmann ON, Rammos S, Jakob M, Corin WJ, Hess OM, Bourgeois M. Left ventricular diastolic dysfunction later after coarctation repair in childhood:influence of left ventricular hypertrophy. J Am Coll Cardiol. 1993:21:1454–1460.

    Google Scholar 

  38. Atherton JJ, Moore TD, Lele SS, Thomson HL, Galbraith AJ, Belenkie I, Tyberg JV, Frenneaux MP. Diastolic ventricular interaction in chronic heart failure. The Lancet 1997;349:1720–1724.

    Google Scholar 

  39. Eichhorn EJ, Hatfield B, Marcoux L, Risser RC. Functional importance of myocardial relaxation in patients with congestive heart failure. J Cardiac Failure 1994;1:45–56.

    Google Scholar 

  40. Weisfeldt ML, Frederiksen JW, Yin FCP, Weiss JL. Evidence of incomplete ventricular relaxation in the dog. J Clinic Invest 1978;62:1296–1302.

    Google Scholar 

  41. Shintani H, Glantz SA. The left ventricular pressure-volume relation, relaxation and filling. In:Left ventricular diastolic function and heart failure. Gaasch WH and LeWinter MM, eds. Lea & Febiger, Philadelphia, Pennsylvania, 1994, p. 57–88.

    Google Scholar 

  42. De Hert SG, Gillebert TC, Ten Broecke PW, Mertens E, Rodrigus IE, Moulijn AJ. Contraction-relaxation coupling and impaired left ventricular performance in coronary surgery patients. Anesthesiology 1999;90:748–757.

    Google Scholar 

  43. Noda T, Cheng CP, De Tombe PP, Little WC. Curvilinearity of the LV end-systolic pressure-volume and dP=dtmax-end-diastolic volume relations. Am J Physiol 1993;265:H910–H917.

    Google Scholar 

  44. De Hert SG, Gillebert TC, Ten Broecke PW, Moulijn AJ. Deficient length dependent activation of myocardial function in coronary surgery patients. Anesthesiology 1999;91:379–387.

    Google Scholar 

  45. Wiggers CJ. Studies on the consecutive phases of the cardiac cycle. 1. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Am J Physiol 1921;56:415.

    Google Scholar 

  46. Gillebert TC, Leite-Moreira AF, De Hert SG. The hemodynamic manifestation of normal myocardial relaxation. Acta Cardiologica 1997;52:223–246.

    Google Scholar 

  47. Crozatier B. Stretch induced modifications of myocardial performance. From ventricular function to cellular and molecular mechanisms. Cardiovasc Res 1996;32:25–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillebert, T.C., Leite-Moreira, A.F. & De Hert, S.G. Load Dependent Diastolic Dysfunction in Heart Failure. Heart Fail Rev 5, 345–355 (2000). https://doi.org/10.1023/A:1026563313952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026563313952

Navigation