Skip to main content
Log in

Mitochondrial DNA variation in populations of the mussel Mytilus trossulus from the Southern Baltic

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The mussel Mytilus trossulus is an important component of the Baltic brackish water ecosystem. The genetic structure of mussel (M. trossulus) populations was studied in sites along the Polish coast, Southern Baltic for two segments of mitochondrial DNA (mtDNA). The mode of inheritance of Mytilus mtDNA is termed doubly uniparental; two genomes are passed independently down the female (the F genome) and male (the M genome) lines of descent. The M genome has not been detected at high frequency in M. trossulus, thus the present study focuses on the F genome. PCR and RFLP analysis was used to characterise haplotypes in the coding region ND2-COIII; PCR was used to detect length variants in a major noncoding region. Significant differentiation between populations was observed in the frequency of 24 coding region haplotypes and 14 different length variants. For the three most frequent coding region haplotypes, two (I and III) are associated with the length variants, whereas the third (II) is monomorphic for a single variant of short length. It is suggested that variant II is derived by introgression from a related species, M. edulis, and may be resistant to expansion in the noncoding region. In both regions studied, the Ewens–Watterson test reveals significant deviations from neutrality with an excess of rare variants. This might be due to selection against slightly deleterious variants and is consistent with previously published results for Mytilus taxa. The present study also points towards the potential utility of mtDNA length variation in studies of population differentiation of Mytilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, S. R., 1996. Mitochondrial DNA length variation in the mussel Mytilus. PhD thesis. University of Wales Swansea, U.K.

  • Cardinale, B. J., M. A. Palmer & S. L. Collins. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415: 426–429.

    PubMed  Google Scholar 

  • Ewens, W. J., 1972. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 5: 87–112.

    Google Scholar 

  • Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package), Version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle WA 98195, U.S.A.

    Google Scholar 

  • Fitch, W. M. & E. Margoliash, 1967. Construction of phylogenetic trees. Science 155: 279–284.

    PubMed  Google Scholar 

  • Fuller, K. M. & E. Zouros, 1993. Dispersed discrete length polymorphism of mitochondrial DNA in the scallop Placopecten magellanicus (Gmelin). Current Genetics 23: 365–369.

    PubMed  Google Scholar 

  • Gjetvaj, B., D. I. Cook & E. Zouros, 1992. Repeated sequences and large-scale variation of mitochondrial DNA: A common feature among scallops (Bivalvia: Pectinidae). Mol. Biol. Evol. 9: 106–124.

    Google Scholar 

  • Hoffmann, R. J., J. L. Boore & W. M. Brown, 1992. A novel mitochondrial genome organisation for the blue mussel, Mytilus edulis. Genetics 131: 397–412.

    PubMed  Google Scholar 

  • Kimura, M., 1991. Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. Proc. Nat. Acad. Sci. U.S.A. 88: 5969–5973.

    Google Scholar 

  • Lunt, D. H., L. E. Whipple & B. C. Hyman, 1998. Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol. Ecol. 7: 1441–1455.

    PubMed  Google Scholar 

  • McElroy, D., P. Moran, E. Bermingham & I. Kornfield, 1991. REAP: an integrated environment for the manipulation and phylogenetic analysis of restriction data. J. Hered. 83: 157–158.

    Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press. New York.

    Google Scholar 

  • Nei, M. & W.-H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. U.S.A. 76: 5269–5273.

    Google Scholar 

  • Ohta, T., 1992. The nearly neutral theory of molecular evolution. Ann. Rev. Ecol. Syst. 23: 263–286.

    Google Scholar 

  • Quesada, H., M. Warren & D. O. F. Skibinski, 1998. Nonneutral evolution and differential mutation rate of gender-associated mitochondrial DNA lineages in the marine mussel Mytilus. Genetics 149: 1511–1526.

    PubMed  Google Scholar 

  • Quesada, H., R. Wenne & D. O. F. Skibinski, 1995. Differential introgression of mitochondrial DNA across species boundaries within the marine mussel genus Mytilus. Proc. r. Soc. Lond. Ser. B, Biol. Sci. 262: 51–56.

    Google Scholar 

  • Quesada, H., R. Wenne & D. O. F. Skibinski, 1999. Interspecies transfer of female mitochondrial DNA is coupled with rolereversals and departure from neutrality in the mussel Mytilus trossulus. Mol. Biol. Evol. 16: 655–665.

    PubMed  Google Scholar 

  • Rigaa, A., M. Monnerot & D. Sellos, 1995. Molecular cloning and complete nucleotide sequence of the repeated unit and flanking gene of the scallop Pecten maximus mitochondrial DNA: putative replication origin features. J. Mol. Evol. 41: 189–195.

    PubMed  Google Scholar 

  • Roff, D. A. & P. Bentzen, 1989. The statistical analysis of mitochondrial DNA polymorphisms: ÷2 and the problem of small samples. Mol. Biol. Evol. 6: 539–545.

    PubMed  Google Scholar 

  • Rumohr, H., E. Bonsdorff & T. Pearson, 1996. Zoobenthic succession in Baltic sedimentary habitats. Arch. Fish. mar. Res. 44: 179–214.

    Google Scholar 

  • Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Skibinski, D. O. F., C. Gallagher & C. M. Beynon, 1994. Sex – limited mitochondrial DNA transmission in the marine mussel Mytilus edulis. Genetics 138: 801–809.

    PubMed  Google Scholar 

  • Skibinski, D. O. F., C. Gallagher & H. Quesada, 1999. On the roles of selection, mutation and drift in the evolution of mitochondrial DNA diversity in British Mytilus edulis (Mytilidae; Mollusca) populations. Biol. J. linn. Soc. 68: 195–213.

    Google Scholar 

  • Vainola, R. & M. M. Hvilsom, 1991. Genetic divergence and a hybrid zone between Baltic and North Sea Mytilus populations (Mytilidae: Mollusca). Biol. J. linn. Soc. 43: 127–148.

    Google Scholar 

  • Warzocha, J., 1995. Classification and structure of macrofaunal communities in the southern Baltic. Arch. Fish. mar. Res. 43: 225–237

    Google Scholar 

  • Watterson, G. A., 1978. The homozygosity test of neutrality. Genetics 88: 405–417.

    Google Scholar 

  • Watterson, G. A., 1986. The homozygosity test after a change in population size. Genetics 112: 899–907.

    PubMed  Google Scholar 

  • Wenne, R. & D. O. F. Skibinski, 1995. Mitochondrial DNA heteroplasmy in European populations of the mussel Mytilus trossulus. Mar. Biol. 122: 619–624.

    Google Scholar 

  • Wilding, C. S., A. R. Beamont & J. W. Latchford, 1997. Mitochondrial DNA variation in the scallop Pecten maximus (L.) assessed by a PCR-RLFP method. Heredity 79: 178–189.

    PubMed  Google Scholar 

  • Zouros, E., A. O. Ball, C. Saavedra & K. R. Freeman, 1994. An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proc. Nat. Acad. Sci. U.S.A. 91: 7463–7467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zbawicka, M., Wenne, R. & Skibinski, D. Mitochondrial DNA variation in populations of the mussel Mytilus trossulus from the Southern Baltic. Hydrobiologia 499, 1–12 (2003). https://doi.org/10.1023/A:1026356603105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026356603105

Navigation