Skip to main content
Log in

9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Subfossil chironomid analysis was applied to a sediment core from Sägistalsee, a small lake at present-day tree-line elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea (spruce) at ca. 6500 cal. 14C yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70–1450, 1900–2350, and 3500–3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e.g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alm T. and Willassen E. 1993. Late Weichselian Chironomidae (Diptera) stratigraphy of lake Nedre Æråsvatn, Andøya, Northern Norway. Hydrobiologia 264: 21–32.

    Google Scholar 

  • Bennett K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155–170.

    Google Scholar 

  • Berg M.B. 1995. Larval food and feeding behaviour. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Chapman and Hall, London, pp. 136–168.

    Google Scholar 

  • Birks H.J.B. and Gordon A.D. 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London, 317 pp.

    Google Scholar 

  • Bretschko G. 1995. Opportunities of high alpine research, the lake ‘Vorderer Finstertaler See’ as an example (Kühtai, Tirol, 2237 m a.s.l.). Limnologica 25: 105–108.

    Google Scholar 

  • Brodin Y. 1982. Palaeoecological studies of the recent development of the lake Växjösjön IV. Interpretation of the eutrophication process through the analysis of subfossil chironomids. Arch. Hydrobiol. 93: 313–326.

    Google Scholar 

  • Brodin Y.W. 1990. Midge fauna development in acidified lakes in northern Europe. Phil. Trans. r. Soc. Lond. B 327: 295–298.

    Google Scholar 

  • Brooks S.J. 1996. Three thousand years of environmental history in a Cairngorms Lochan revealed by analysis of non-biting midges (Insecta: Diptera: Chironomidae). Bot. J. Scotl. 48: 89–98.

    Google Scholar 

  • Buskens R.F.M. 1987. The chironomid assemblages in shallow lentic waters differing in acidity, buffering capacity and trophic level in the Netherlands. Ent. scand. Suppl. 29: 217–224.

    Google Scholar 

  • Chapin F.S. III and Körner C. 1995. Patterns, causes, changes, and consequences of biodiversity in arctic and alpine ecosystems. Ecol. Stud. 113: 313–320.

    Google Scholar 

  • Cranston P.S. 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Freshwat. biol. Assoc. sci. Publ. 45: 1–152.

    Google Scholar 

  • Currie D.C. and Walker I.R. 1992. Recognition and paleohydrologic significance of fossil black fly larvae, with a key to the Nearctic genera (Diptera: Simuliidae). J. Paleolim. 7: 37–54.

    Google Scholar 

  • Dinsmore W.P. and Prepas E.E. 1997. Impact of hypolimnetic oxygenation on profundal invertebrates in a eutrophic lake in central Alberta. II. Changes in Chironomus spp. abundance and biomass. Can. J. Fish. aquat. Sci. 54: 2170–2181.

    Google Scholar 

  • Döscher A., Gäggeler H.W., Schotterer U. and Schwikowski M. 1995. A 130 year deposition record of sulfate, nitrate and chloride from a high-alpine glacier. Wat. Air Soil Pollut. 85: 603–609.

    Google Scholar 

  • Fedele F.G. and Wick L. 1996. Glacial/postglacial transition south of Splügen pass: environment and human activity. Il Quaternario 9: 541–550.

    Google Scholar 

  • Frey D.G. 1988. Littoral and offshore communities of diatoms, cladocerans, and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.

    Google Scholar 

  • Fritz S.C. 1989. Lake development and limnological response to prehistoric and historic land use in Diss, Norfolk, U.K. J. Ecol. 77: 182–202.

    Google Scholar 

  • Grabherr G., Gottfried M., Gruber A. and Pauli H. 1995. Patterns and current changes in Alpine plant diversity. Ecol. Stud. 113: 167–181.

    Google Scholar 

  • Grimås U. and Nilsson N.-A. 1962. Nahrungsfauna und kanadische Seeforelle in Berner Gebirgsseen. Schweiz. Z. Hydrol. 24: 49–75.

    Google Scholar 

  • Gross T. 1999. Biodiversity and sustainable development in mountains. In: Price M.F. (ed.), Global Change in the Mountains. Parthenon Publishing, New York: 4–6.

    Google Scholar 

  • Guilizzoni P., Marchetto A., Lami A., Cameron N.G., Appleby P.G., Rose N.L., Schnell Ø.A., Belis C.A., Giorgis A. and Guzzi L. 1996. The environmental history of a mountain lake (Lago Paione Superiore, Central Alps, Italy) for the last c. 100 years: a multidisciplinary palaeolimnological study. J. Paleolim. 15: 245–264.

    Google Scholar 

  • Guthruf J., Guthruf-Seiler K. and Zeh M. 1999. Kleinseen im Kanton Bern. Gewässer und Bodenschutzlabor des Kantons Bern (GBL), Bern, 229 pp.

  • Haas J.N., Richoz I., Tinner W. and Wick L. 1998. Synchronous Holocene climate oscillations recorded on the Swiss Plateau and at timberline in the Alps. Holocene 8: 301–309.

    Google Scholar 

  • Haworth E.Y. 1985. 'The highly nervous system of the English lakes': Aquatic ecosystem sensitivity to external changes, as demonstrated by diatoms. Freshwat. biol. Assoc. ann. Report 53: 60–79.

    Google Scholar 

  • Heiri O. 2001. Holocene Palaeolimnology of Swiss Mountain Lakes Reconstructed Using Subfossil Chironomid Remains: Past Climate and Prehistoric Human Impact on Lake Ecosystems. PhD Diss., University of Bern, Bern, 113 pp.

    Google Scholar 

  • Heiri O. and Lotter A.F. 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolim. 26: 343–350.

    Google Scholar 

  • Henrikson L., Olofson J.B. and Oscarson H.G. 1982. The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86: 223–229.

    Google Scholar 

  • Hirvenoja M. and Hirvenoja E. 1988. Corynoneura brundini spec. nov. Ein Beitrag zur Systematik der Gattung Corynoneura (Diptera, Chironomidae). Spixiana/Suppl. 14: 213–238.

    Google Scholar 

  • Hofmann W. 1971a. Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch. Hydrobiol. Beih. 6: 1–50.

    Google Scholar 

  • Hofmann W. 1971b. Die postglaziale Entwicklung der Chironomidenund Chaoboriden-Fauna (Dipt.) des Schöhsees. Arch. Hydrobiol./Suppl. 40: 1–74.

    Google Scholar 

  • Hofmann W. 1986. Chironomid analysis. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley and Sons, Chichester, pp. 715–727.

    Google Scholar 

  • Hofmann W. 1999. Holocene succession and morphological variation of the Bosmina (Eubosmina) taxa of Plusssee (northern Germany). Arch. Hydrobiol. spec. Issues Advanc. Limnol. 54: 359–372.

    Google Scholar 

  • Hutchinson G.E. 1975. A Treatise on Limnology. Volume I: Geography, Physics, and Chemistry. J. Wiley and Sons, New York, 137 pp.

    Google Scholar 

  • Iovino A.J. 1975. Extant Chironomid Populations and the Representativeness and Nature of Their Remains in Lake Sediments. PhD Diss., Indiana University, 54 pp.

  • Itkonen A., Marttila V., Meriläinen J.J. and Salonen V.-P. 1999. 8000-year history of palaeoproductivity in a large boreal lake. J. Paleolim. 21: 271–294.

    Google Scholar 

  • Kansanen P.H. 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann. zool. fennici 22: 57–90.

    Google Scholar 

  • Koinig K., Shotyk W., Lotter A.F., Ohlendorf C. and Sturm M. 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake — the role of climate, vegetation and land-use history. J. Paleolim. 30: 307–320.

    Google Scholar 

  • Kovach J.S. 1995. Multivariate data analysis. In: Maddy D. and Brew J.S. (eds), Statistical Modelling of Quaternary Science Data. Technical Guide 5, Quaternary Science Association, Cambridge, pp. 1–38.

    Google Scholar 

  • Lami A., Marchetto A., Guilizzoni P., Giorgis A. and Massaferro J. 1994. Paleolimnological records of carotenoids and carbonaceous particles in sediments of some lakes in the Southern Alps. Hydrobiologia 274: 57–64.

    Google Scholar 

  • Legendre P. and Legendre L. 1998. Numerical Ecology. Elsevier Science B.V., Amsterdam, 853 pp.

    Google Scholar 

  • Levesque A.J., Mayle F.E., Walker I.R. and Cwynar L.C. 1993. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626.

    Google Scholar 

  • Lindegaard C. 1995. Classification of water-bodies and pollution. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Chapman and Hall, London, pp. 385–404.

    Google Scholar 

  • Little J.L. and Smol J.P. 2000. Changes in fossil midge (Chironomidae) assemblages in response to cultural activities in a shallow, polymictic lake. J. Paleolim. 23: 207–212.

    Google Scholar 

  • Lotter A.F. and Birks H.J.B. 2003. Holocene sediments of Sägistalsee, a small lake at the present-day tree-line in the Swiss Alps. J. Paleolim. 30: 253–260.

    Google Scholar 

  • Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.

    Google Scholar 

  • Massaferro J. and Corley J. 1998. Environmental disturbance and chironomid palaeodiversity: 15 kyr BP of history at Lake Mascardi, Patagonia, Argentina. Aquat. Conserv. 8: 315–323.

    Google Scholar 

  • Meyer E. 1990. A simple subsampling device for macroinvertebrates with general remarks on the processing of stream benthos samples. Arch. Hydrobiol. 117: 309–318.

    Google Scholar 

  • Moog O. 1995. Fauna Aquatica Austriaca. Abteilung für Hydrobiologie, Fischereiwirtschaft und Aquakultur der Universität für Bodenkultur, Wien.

    Google Scholar 

  • Müller B., Lotter A.F., Sturm M. and Ammann A. 1998. Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat. Sci. 60: 316–337.

    Google Scholar 

  • Niessen F. and Sturm M. 1987. Die Sedimente des Baldeggersees (Schweiz) — Ablagerungsraum und Eutrophierungsentwicklung während der letzten 100 Jahre. Arch. Hydrobiol. 108: 365–383.

    Google Scholar 

  • Ohlendorf C., Sturm M. and Hausmann S. 2003. Natural environmental changes and human impact reflected in sediments of a high alpine lake in Switzerland. J. Paleolim. 30: 297–306.

    Google Scholar 

  • Oliver D.R. 1971. Life history of Chironomidae. Ann. Rev. Ent. 16: 211–230.

    Google Scholar 

  • Pechlaner R. 1966. Die Finstertaler Seen (Kühtai, Österreich) I. Morphometrie, Hydrographie, Limnophysik und Limnochemie. Arch. Hydrobiol. 62: 165–230.

    Google Scholar 

  • Pellatt M.G., Smith M.J., Mathewes R.W., Walker I.R. and Palmer S.L. 2000. Holocene treeline and climate change in the subalpine zone near Stoyoma Mountain, Cascade Mountains, southwestern British Columbia, Canada. Arct. antarct. alp. Res. 32: 73–83.

    Google Scholar 

  • Peterson B.V., Baez M. and Sinclair B.J. 1989. A redescription of the adults and larva of Thaumalea subafricana (Diptera: Thaumaleidae), and first description of the pupa. Ent. News 100: 49–58.

    Google Scholar 

  • Pinder L.C.V. 1986. Biology of freshwater Chironomidae. Ann. Rev. Ent. 31: 1–23.

    Google Scholar 

  • Psenner R. and Schmidt R. 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.

    Google Scholar 

  • Raddum G.G. and Sæther O.A. 1981. Chironomid communities in Norwegian lakes with different degrees of acidification. Verh. internat. Verein. Limnol. 21: 399–405.

    Google Scholar 

  • Reiss F. 1968. Verbreitung lakustrischer Chironomiden (Diptera) des Alpengebietes. Ann. zool. fenn. 5: 119–125.

    Google Scholar 

  • Rieradevall M. and Brooks S.J. 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J. Paleolim. 25: 81–99.

    Google Scholar 

  • Rück A., Walker I.R. and Hebda R. 1998. A paleolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.

    Google Scholar 

  • Sæther O.A. 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.

    Google Scholar 

  • Sandman O., Eskonen K. and Liehu A. 1990. The eutrophication history of Lake Särkinen, Finland and the effects of lake aeration. Hydrobiologia 214: 191–199.

    Google Scholar 

  • Schakau B. 1990. Stratigraphy of the fossil Chironomidae (Diptera) from Lake Grasmere, South Island, New Zealand, during the last 6000 years. Hydrobiologia 214: 213–221.

    Google Scholar 

  • Scheffer M. 1998. The Ecology of Shallow Lakes. Chapman and Hall, London, 357 pp.

    Google Scholar 

  • Schmid P.E. 1993. A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers with particular reference to a numerical taxonomic approach. Part I. Diamesinae, Prodiamesinae and Orthocladiinae, Wasser und Abwasser Suppl. 3/93: 1–514.

    Google Scholar 

  • Serra-Tosio B. 1978. Les Diptères chironomidés du Lac de Mont Coua (Parc National de la Vanoise). Travaux Scientifiques du Parc National de la Vanoise 9: 141–145.

    Google Scholar 

  • Skjelkvale B.L. and Wright R.F. 1998. Mountain lakes; Sensitivity to acid deposition and global change. Ambio 27: 280–286.

    Google Scholar 

  • Smith M.J., Pellatt M.G., Walker I.R. and Mathewes R.W. 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277–293.

    Google Scholar 

  • Spengler D. 1973. Limnologische, hydrologische und morphologische Untersuchungen im Faulhorngebiet (Berner Oberland). PhD Diss., University of Bern, Bern, 155 pp.

    Google Scholar 

  • Steiner G. 1911. Biologische Studien an Seen der Faulhornkette im Berner Oberland. PhD Diss., University of Bern, Bern.

    Google Scholar 

  • ter Braak C.J.F. 1987. Ordination. In: Jongman R.H., ter Braak C.J.F. and van Tongeren O.F.R. (eds), Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, pp. 91–173.

    Google Scholar 

  • ter Braak C.J.F. and Prentice I.C. 1988. A theory of gradient analysis. Adv. ecol. Res. 18: 271–317.

    Google Scholar 

  • ter Braak C.J.F. and Smilauer P. 1998. CANOCO Reference Manual and User's Guide to CANOCO for Windows. Centre for Biometry Wageningen, Wageningen, 352 pp.

    Google Scholar 

  • Tinner W., Ammann B. and Germann P. 1996. Treeline fluctuations recorded for 12,500 years by soil profiles, pollen, and plant macrofossils in the Central Swiss Alps. Arct. alp. Res. 28: 131–147.

    Google Scholar 

  • Uutala A.J. 1990. Chaoborus (Diptera: Chaoboridae) mandibles — paleolimnological indicators of the historical status of fish populations of acid sensitive lakes. J. Paleolim. 4: 139–152.

    Google Scholar 

  • Wagner R. 1997. Diptera, Thaumaleidae. In: Nilsson A.N. (ed.), Aquatic Insects of Northern Europe, Volume 2. Apollo Books, Stenstrup DK, pp. 187–191.

  • Walker I.R. 1987. Chironomidae (Diptera) in paleolimnology. Quat. Sci. Rev. 6: 29–40.

    Google Scholar 

  • Walker I.R. 1995. Chironomids as indicators of past environmental change. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Chapman and Hall, London, pp. 405–422.

    Google Scholar 

  • Walker I.R. and Mathewes R.W. 1989a. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.

    Google Scholar 

  • Walker I.R. and Mathewes R.W. 1989b. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its paleoenvironmental significance. J. Paleolim. 2: 1–14.

    Google Scholar 

  • Walker I.R., Mott R.J. and Smol J.P. 1991a. Allerød-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.

    Google Scholar 

  • Walker I.R., Levesque A.J., Cwynar L.C. and Lotter A.F. 1997. An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.

    Google Scholar 

  • Walker I.R., Smol J.P., Engstrom D.R. and Birks H.J.B. 1991b. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.

    Google Scholar 

  • Warwick W.F. 1980. Paleolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. aquat. Sci. 206: 1–117.

    Google Scholar 

  • Wathne B.M., Patrick S.T., Monteith D. and Barth H. 1995. AL:PE — Acidification of Mountain Lakes: Palaeolimnology and Ecology. AL:PE 1 report for the period April 1991-April 1993. Ecosystem Research Report, Volume 9, European Commission, Directorate-General for Science, Research and Development, Luxembourg, 296 pp.

    Google Scholar 

  • Welch H. 1991. Comparison between lakes and seas during the Arctic winter. Arct. alp. Res. 23: 11–23.

    Google Scholar 

  • Wick L. and Tinner W. 1997. Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climate fluctuations. Arct. alp. Res. 29: 445–458.

    Google Scholar 

  • Wick L., van Leeuwen J.F.N., van der Knaap W.O. and Lotter A.F. 2003. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolim. 30: 261–272.

    Google Scholar 

  • Wiederholm T. 1981. Associations of lake-living Chironomidae. Schweiz. Z. Hydrol. 43: 140–150.

    Google Scholar 

  • Wiederholm T. (ed.) 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae. Ent. scand. Suppl. 19: 1–457.

  • Wiederholm T. 1984. Responses of aquatic insects to environmental pollution. In: Resh V.H. and Rosenberg D.M. (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York, pp. 508–557.

    Google Scholar 

  • Wiederholm T. (ed.) 1989. Chironomidae of the Holarctic region. Keys and diagnoses. Part III. Adult males. Ent. scand. Suppl. 34: 1–532.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiri, O., Lotter, A.F. 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. Journal of Paleolimnology 30, 273–289 (2003). https://doi.org/10.1023/A:1026036930059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026036930059

Navigation