Skip to main content
Log in

Presynaptic Modulation Controlling Neuronal Excitability and Epileptogenesis: Role of Kainate, Adenosine and Neuropeptide Y Receptors

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Based on the idea that seizures may arise from an overshoot of excitation over inhibition, all substances that may decrease glutamatergic function while having no effect or even increasing GABAergic neurotransmission are likely to be effective anticonvulsants. We now review the possible role of three such neuromodulators, kainate, adenosine, and neuropeptide Y receptors in controlling hyperexcitability and epileptogenesis. Particular emphasis is given on the robust neuromodulatory role of these three groups of receptors on the release of glutamate in the hippocampus, a main focus of epilepsy. Moreover, we also give special attention to the mechanisms of receptor activation and coupled signaling events that can be explored as attractive targets for the treatment of epilepsy and excitotoxicity. The present paper is a tribute to Arsélio Pato de Carvalho who has been the main driving force for the development of Neuroscience in Portugal, notably with a particular emphasis on the presynaptic mechanisms of modulation of neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. deLorenzo, R. J., Towne, A. R., Pellock, J. M., and Ko, D. J. 1992. Status epilepticus in children, adults and the elderly. Epilepsia 33(Suppl. 4):S15-S25.

    PubMed  Google Scholar 

  2. Schmidt, D. and Krämer, G. 1994. The new anticonvuisant drugs: Implications for avoidance of adverse effects. Drug Safety 11:422-431.

    PubMed  Google Scholar 

  3. Dalby, N. O. and Mody, I. 2001. The process of epileptogenesis: A pathophysiological approach. Curr. Opin. Neurol. 14:187-192.

    PubMed  Google Scholar 

  4. Mathern, G. W., Babb, T. L., Leite, J. P., Pretorius, K., Yeoman, K. M., and Kuhlman, P. A. 1996. The pathogenic and progressive features of chronic human epilepsy. Epilepsy Res. 26:151-161.

    PubMed  Google Scholar 

  5. Cole, A. J. 2000. Is epilepsy a progressive disease? The neurobiological consequences of epilepsy. Epilepsia 41(Suppl. 2): S13-S22.

    Google Scholar 

  6. Racine, R. J. 1972. Modification of seizure activity by electrical stimulation. I. Afterdischarge threshold. Electroencephalogr. Clin. Neurophysiol. 32:269-279.

    PubMed  Google Scholar 

  7. Racine, R. J. 1972. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32:281-294.

    PubMed  Google Scholar 

  8. Cavazos, J. E. and Sutula, T. P. 1990. Progressive neuronal loss induced by kindling: A possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res. 527:1-6.

    PubMed  Google Scholar 

  9. Cavazos, J. E., Das, I., and Sutula, T. P. 1994. Neuronal loss induced in limbic pathways by kindling: Evidence for induction of hippocampal sclerosis by repeated brief seizures. J. Neurosci. 14:106-121.

    Google Scholar 

  10. Bengzon, J., Kokaia, Z., Elmer, E., Nanobashvili, A., Kokaia, M., and Lindvall, O. 1997. Apoptosis and proliferation of dentate gyrus neurons after single and intermitent limbic seizures. Proc. Natl. Acad. Sci. USA 94:10432-10437.

    PubMed  Google Scholar 

  11. Tasch, E., Cendes, F., Li, L. M., Dubeau, F., Andermann, F., and Arnold, D. L. 1999. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann. Neurol. 45:568-576.

    PubMed  Google Scholar 

  12. DeGiorgio, C. M., Tomiyasu, U., Gott, P. S., and Treiman, D. M. 1992. Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia 33:23-27.

    PubMed  Google Scholar 

  13. Wieshmann, U. C., Woermann, F. G., Lemieux, L., Free, S. L., Bartlett, P. A., Smith, S. J., Duncan, J. S., Stevens, J. M., and Shorvon, S. D. 1997. Development of hippocampal atrophy: A serial magnetic resonance imaging study in a patient who developed epilepsy after generalized status epilepticus. Epilepsia 38:1238-1241.

    PubMed  Google Scholar 

  14. Willow, M., Gonoi, T., and Catterall, W. A. 1985. Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol. Pharmacol. 27:549-558.

    PubMed  Google Scholar 

  15. Bonifácio, M. J., Sheridan, R. D., Parada, A., Cunha, R. A., Patmore, L., and Soaresda-Silva, P. 2001. Interaction of the novel anticonvulsant, BIA 2-093, with voltage-gated sodium channels: Comparison with carbamazepine. Epilepsia 42:600-608.

    PubMed  Google Scholar 

  16. Reynolds, E. H. 1995. Do anticonvulsants alter the natural time course of epilepsy? Treatment should be started as early as possible. Br. Med. J. 301:176-180.

    Google Scholar 

  17. Coutinho-Netto, J. C., Abdul-Ghani, A. S., Collins, J. F., and Bradford, H. F. 1981. Is glutamate a trigger factor in epileptic hyperactivity? Epilepsia 22:289-296.

    PubMed  Google Scholar 

  18. Chapman, A. G. 1998. Glutamate receptors in epilepsy. Prog. Brain Res. 116:371-383.

    PubMed  Google Scholar 

  19. Löscher, W. 1998. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog. Neurobiol. 54:721-741.

    PubMed  Google Scholar 

  20. Cain, D. P. 1989. Long-term potentiation and kindling: How similar are the mechanisms? Trends Neurosci. 12:6-10.

    PubMed  Google Scholar 

  21. Lipton, P. 1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431-1568.

    PubMed  Google Scholar 

  22. Michaelis, E. K. 1998. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54:369-415.

    PubMed  Google Scholar 

  23. Lees, G. J. 2000. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 59:33-78.

    PubMed  Google Scholar 

  24. MacDermott, A. B., Role, L. W., and Siegelbaum, S. A. 1999. Presynaptic ionotropic receptors and the control of transmitter release. Ann. Rev. Neurosci. 22:443-485.

    PubMed  Google Scholar 

  25. Schoepp, D. D. 2001. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther. 299:12-20.

    PubMed  Google Scholar 

  26. Ben-Ari, Y. 1985. Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375-403.

    PubMed  Google Scholar 

  27. Coyle, J. T. 1983. Neurotoxic action of kainic acid. J. Neurochem. 41:1-11.

    PubMed  Google Scholar 

  28. Represa, A., Tremblay, E., and Ben-Ari, Y. 1987. Kainate binding sites in the hippocampal mossy fibers: Localization and plasticity. Neuroscience 20:739-748.

    PubMed  Google Scholar 

  29. Gaiarsa, J.-L., Zagrean, L., and Ben-Ari, Y. 1994. Neonatal irradiation prevents the formation of hippocampal mossy fibers and the epileptic action of kainate on rat CA3 pyramidal neurons. J. Neurophysiol. 71:204-215.

    PubMed  Google Scholar 

  30. Ben-Ari, Y. and Cossart, R. 2000. Kainate: A double agent that generates seizures—Two decades of progress. Trends Neurosci. 23:580-587.

    PubMed  Google Scholar 

  31. Chittajallu, R., Braithwaite, S. P., Clarke, V. R. J., and Henley, J. M. 1999. Kainate receptor: Subunits, synaptic localization and function. Trends Pharmacol. Sci. 20:26-35.

    PubMed  Google Scholar 

  32. Lerma, J., Paternain, A. V., Rodríguez-Moreno, A., López-García, J. C. 2001. Molecular physiology of kainate receptors. Physiol. Rev. 81:971-998.

    PubMed  Google Scholar 

  33. Rosenmund, C., Stern-Bach, Y., and Stevens, C. F. 1998. The tetrameric structure of a glutamate receptor channel. Science 280:1596-1599.

    PubMed  Google Scholar 

  34. Malva, J. O., Carvalho, A. P., and Carvalho, C. M. 1998. Kainate receptors in hippocampal CA3 subregion: Evidences for a role in regulating neurotransmitter release. Neurochem. Int. 32:1-6.

    PubMed  Google Scholar 

  35. Herb, A., Burnashev, N., Werner, P., Sakmann, B., Wisden, W., and Seeburg, P. H. 1992. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8:775-785.

    PubMed  Google Scholar 

  36. Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L., and Gallo, V. 1994. Glial cells of the oligodendrocyte lineage express both kainate-and AMPA-preferring subtypes of glutamate receptor. Neuron 12:357-371.

    PubMed  Google Scholar 

  37. Huettner, J. E. 1990. Glutamate receptor channels in rat DRG neurons: Activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5:255-266.

    PubMed  Google Scholar 

  38. Bleakman, D. and Lodge, D. 1998. Neuropharmacology of AMPA and kainate receptors. Neuropharmacol. 37:1187-1204.

    Google Scholar 

  39. Bleakman, D. 1999. Kainate receptor pharmacology and physiology. Cell. Mol. Life Sci. 56:558-566.

    PubMed  Google Scholar 

  40. Castillo, P. E., Malenka, R. C., and Nicoll, R. A. 1997. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388:182-186.

    PubMed  Google Scholar 

  41. Vignes, M. and Collingridge, G. L. 1997. The synaptic activation of kainate receptors. Nature 388:179-182.

    PubMed  Google Scholar 

  42. Chittajallu, R., Vignes, M., Dev, K. K., Barnes, J. M., Collingridge, G. L., and Henley, J. M. 1996. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379:78-81.

    PubMed  Google Scholar 

  43. Cunha, R. A. and Ribeiro, J. A. 2001. ATP as a presynaptic modulator. Life Sci. 68:119-137.

    Google Scholar 

  44. Mulle, C., Sailer, A., Pérez-Otaño, I., Bureau, I., Maron, C., Gage, F. H., Mann, J. R., Bettler, B., and Heinemann, S. F. 1998. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392:601-605.

    PubMed  Google Scholar 

  45. Hollmann, M. and Heinemann, S. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31-108.

    PubMed  Google Scholar 

  46. Malva, J. O., Ambrósio, A. F., Cunha, R. A., Ribeiro, J. A., Carvalho, A. P., and Carvalho, C. M. 1995. A functionally active presynaptic high-affinity kainate receptor in the rat hippocampal CA3 subregion. Neurosci. Lett. 185:83-86.

    PubMed  Google Scholar 

  47. Malva, J. O., Carvalho, A. P., and Carvalho, C. M. 1996. Domoic acid induces the release of glutamate in the rat CA3 sub-region. Neuroreport 7:1330-1334.

    PubMed  Google Scholar 

  48. Cunha, R. A., Constantino, M. D., and Ribeiro, J. A. 1997 Inhibition of H3-gamma-aminobutyric acid release by kainate receptor activation in rat hippocampal synaptosomes. Eur. J. Pharmacol. 323:167-172.

    PubMed  Google Scholar 

  49. Lerma, J., Partenain, A. V., Naranjo, J. R., and Mellström, B. 1993. Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 90:11688-11692.

    PubMed  Google Scholar 

  50. Clarke, V. R. J., Ballyk, B. A., Hoo, K. H., Mandelzys, A., Pellizzari, A., Bath, C. P., Thomas, J., Sharpe, E. F., Davies, C. H., Ornstein, P. L., Schoepp, D. D., Kamboj, R. K., Collingridge, G. L., Lodge, D., and Bleakman, D. 1997. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389:599-603.

    PubMed  Google Scholar 

  51. Rodríguez-Moreno, A., Herreras, O., and Lerma, J. 1997. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19:893-901.

    PubMed  Google Scholar 

  52. Monaghan, D. T. and Cotman, C. W. 1982. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 252:91-100.

    PubMed  Google Scholar 

  53. Petralia, R. S., Wang, Y. X., and Wenthold, R. J. 1994. Histological and ultrastructural localization of the kainate receptors, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J. Comp. Neurol. 349:85-110.

    PubMed  Google Scholar 

  54. Bettler, B. and Mulle, C. 1995. Neurotransmitter receptors II: AMPA and kainate receptors. Neuropharmacol. 34:123-139.

    Google Scholar 

  55. Kamiya H., Ozawa, S., and Manabe, T. 2002. Kainate receptor-dependent short-term plasticity of presynaptic Ca2+ influx at the hippocampal mossy fiber synapses. J. Neurosci. 22:9237-9243.

    PubMed  Google Scholar 

  56. Lauri, S. E., Bortolotto, Z. A., Bleakman, D., Ornstein, P. L., Lodge, D., Isaac, J. T. R., and Collingridge, G. L. 2001. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 32:697-709.

    PubMed  Google Scholar 

  57. Lauri, S. E., Delany, C., Clarke, V. R. J., Bortolotto, Z. A., Ornstein, P. L., Isaac, J. T. R., and Collingridge, G. L. 2001. Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fiber synapses. Neuropharmacol. 41:907-915.

    Google Scholar 

  58. Schmitz, D., Mellor, J., Frerking, M., and Nicoll, R. A. 2001. Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA 98:11003-11008.

    PubMed  Google Scholar 

  59. Schmitz, D., Mellor, J., and Nicoll, R. A. 2001. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 291:1972-1976.

    PubMed  Google Scholar 

  60. Teitelbaum, J. S., Zatorre, R. J., Carpenter, S., Gendron, D., Evans, A. C., Gjedde, A., and Cashman, N. R. 1990. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N. Engl. J. Med. 322:1781-1787.

    PubMed  Google Scholar 

  61. Contractor, A., Swanson, G. T., Sailer, A., O'Gorman, S., and Heinemann, S. F. 2000. Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J. Neurosci. 20:8269-8278.

    PubMed  Google Scholar 

  62. Vignes, M., Clarke, V. R. J., Parry, M. J., Bleakman, D., Lodge, D., Ornstein, P. L., and Collingridge, G. L. 1998. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacol. 37:1269-1277.

    Google Scholar 

  63. Bortolotto, Z. A., Clarke, V. R. J., Delany, C. M., Parry, M, C,, Smolders. I., Vignes, M., Ho, K. H., Miu, P., Brinton, B. T., Fantaske, R., Ogden, A., Gates, M., Ornstein, P. L., Lodge, D., Bleakman, D., and Collingridge, G. J. 1999. Kainate receptors are involved in synaptic plasticity. Nature 402:297-301.

    PubMed  Google Scholar 

  64. Bahn, S., Volk, B., and Wisden, W. 1994. Kainate receptor gene expression in the developing rat brain. J. Neurosci. 14:5525-5547.

    PubMed  Google Scholar 

  65. Phillips, G. R., Huang, J. K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., Shan, W.-S., Arndt, K., Frank, M., Gordon, R. E., Gawinowicz, M. A., Zhao, Y., and Colman, D. R. 2001. The presynaptic particle web: Ultrastructure, composition, dissolution, and reconstitution. Neuron 32:1-20.

    PubMed  Google Scholar 

  66. Pinheiro, P. S., Rodrigues, R. J., Silva, A. P., Cunha, R. A., Oliveira, C. R., and Malva, J. O. 2003. Solubilization and immunological identification of presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat hippocampus. Neurosci. Lett. 336:97-100.

    PubMed  Google Scholar 

  67. Kamiya, H. and Ozawa, S. 1998. Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. J. Physiol. 509:833-845.

    PubMed  Google Scholar 

  68. Kamiya H. and Ozawa, S. 2000. Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J. Physiol. 523:653-665.

    PubMed  Google Scholar 

  69. Frerking, M., Schmitz, D., Zhou, Q., Johansen, J., and Nicoll, R. A. 2001. Kainate receptors depress excitatory synaptic transmission at CA3-CA1 synapses in the hippocampus via a direct presynaptic action. J. Neurosci. 21:2958-2966.

    PubMed  Google Scholar 

  70. Burnashev, N., Villaroel, A., and Sackmann, B. 1996. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J. Physiol. 496:165-173.

    PubMed  Google Scholar 

  71. Rodrígues-Moreno, A. and Lerma, J. 1998. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20:1211-1218.

    PubMed  Google Scholar 

  72. Cunha, R. A., Malva, J. O., and Ribeiro, J. A. 1999. Kainate receptors coupled to Gi/Go proteins in the rat hippocampus. Mol. Pharmacol. 56:429-433.

    PubMed  Google Scholar 

  73. Cunha, R. A., Malva, J. O. and Ribeiro, J. A. 2000. Presynaptic inhibition by kainate receptors of [3H]GABA release is pertussistoxin-sensitive in the rat hippocampus. FEBS Lett. 469:159-162.

    PubMed  Google Scholar 

  74. Rodríguez-Moreno, A., López-Garcia, J. C., and Lerma, J. 2000. Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc. Natl. Acad. Sci. USA 97:1293-1298.

    PubMed  Google Scholar 

  75. Semyanov, A. and Kullmann, D. M. 2001. Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons. Nat. Neurosci. 4:718-723.

    PubMed  Google Scholar 

  76. Cossart, R., Esclapez, M., Hirsch, J. C., Bernard, C., and Ben-Ari, Y. 1998. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat. Neurosci. 1:470-478.

    PubMed  Google Scholar 

  77. Frerking, M., Malenka, R. C., and Nicoll, R. A. 1998. Synaptic activation of kainate receptors on hippocampal interneurons. Nat. Neurosci. 1:479-486.

    PubMed  Google Scholar 

  78. Bureau, I., Bischoff, S., Heinemann, S. F., and Mulle, C. 1999. Kainate receptor-mediated response in the CA1 field of wild-type and GluR6-deficient mice. J. Neurosci. 19:653-663.

    PubMed  Google Scholar 

  79. Mulle, C., Sailer, A., Swanson, G. T., Brana, C., O'Gorman, S., Bettler, B., and Heinemann, S. F. 2000. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28:475-484.

    PubMed  Google Scholar 

  80. Paternain, A. V., Herrera, M. T., Nieto, M. A., and Lerma, J. 2000. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J. Neurosci. 20:196-205.

    PubMed  Google Scholar 

  81. Frerking, M., Petersen, C. C., and Nicoll, R. A. 1999. Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. Proc. Natl. Acad. Sci. USA 96:12917-12922.

    PubMed  Google Scholar 

  82. Cossart, R., Tyzio, R., Dinocourt, C., Esclapez, M., Hirsch, J. C., Ben-Ari, Y., and Bernard, C. 2001. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron 29:497-508.

    PubMed  Google Scholar 

  83. Jiang, L., Xu, J., Nedergaard, M., and Kang, J. 2001. A kainate receptor increases the efficacy of GABAergic synapses. Neuron 30:503-513.

    PubMed  Google Scholar 

  84. Kullmann, D. M. and Semyanov, A. 2002. Glutamatergic modulation of GABAergic signaling among hippocampal interneurons: Novel mechanisms regulating hippocampal excitability. Epilepsia 43:174-178.

    PubMed  Google Scholar 

  85. Cunha, R. A. 2001. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem. Int. 38:107-125.

    PubMed  Google Scholar 

  86. Dunwiddie, T. V. and Masino, S. A. 2001. The role and regulation of adenosine in the central nervous system. Ann. Rev. Neurosci. 24:31-55.

    PubMed  Google Scholar 

  87. Dunwiddie, T. V. 1985. The physiological role of adenosine in the central nervous system. Int. Rev. Neurobiol. 27:63-139.

    PubMed  Google Scholar 

  88. Greene, R. W. and Haas H. L. 1991. The electrophysiology of adenosine in the mammalian central nervous system. Prog. Neurobiol. 36:329-341.

    PubMed  Google Scholar 

  89. Phillis, J. W. and Wu P. H. 1981. The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16:187-239.

    PubMed  Google Scholar 

  90. Dunwiddie, T. V. 1980. Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21:541-548.

    PubMed  Google Scholar 

  91. Mitchell, J. B., Lupica, C. R., and Dunwiddie, T. V. 1993. Activity-dependent release of endogenous adenosine modulates synaptic responses in the rat hippocampus. J. Neurosci. 13:3439-3447.

    PubMed  Google Scholar 

  92. Cunha, R. A. 2001. Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals. Neurochem. Res. 26:979-991.

    PubMed  Google Scholar 

  93. Zimmermann, H. and Braun, N. 1999. Ecto-nucleotidases: Molecular structures, catalytic properties, and functional roles in the nervous system. Prog. Brain Res. 120:371-385.

    PubMed  Google Scholar 

  94. Latini, S. and Pedata, F. 2001. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J. Neurochem. 79:463-484.

    PubMed  Google Scholar 

  95. Lambert, N. A. and Tyler, T. J. 1991. Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus. Neurosci. Lett. 122:50-52.

    PubMed  Google Scholar 

  96. Yoon, K. W. and Rothman, S. M. 1991. Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus. J. Neurosci. 11:1375-1380.

    PubMed  Google Scholar 

  97. Proctor, W. R. and Dunwiddie, T. V. 1987. Pre-and postsynaptic actions of adenosine in the in vitro hippocampus. Brain Res. 426:187-190.

    PubMed  Google Scholar 

  98. Thompson, S. M., Hass, H. L., and Gahwiller, B. H. 1992. Comparison of the actions of adenosine at pre-and postsynaptic receptors in the rat hippocampus in vitro. J. Physiol. 451:347-363.

    PubMed  Google Scholar 

  99. Ambrósio, A. F., Malva, J. O., Carvalho, A. P., and Carvalho, A. M. 1997. Inhibition of N-, P/Q-and other types of Ca2+channels in rat hippocampal nerve terminals by adenosine A1 receptor. Eur. J. Pharmacol. 340:301-310.

    PubMed  Google Scholar 

  100. Yawo, H. and Chuhma, N. 1993. Preferential inhibition of ω-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors. Nature 365:256-258.

    PubMed  Google Scholar 

  101. Wu, L. G. and Saggau, P. 1994. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12:1139-1148.

    PubMed  Google Scholar 

  102. Scholz, K. P. and Miller, R. J. 1996. Presynaptic inhibition at excitatory hippocampal synapses: Development and role of presynaptic Ca2+ channels. J. Neurophysiol. 76:39-46.

    PubMed  Google Scholar 

  103. Scholz, K. P. and Miller, R. J. 1992. Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8:1139-1150.

    PubMed  Google Scholar 

  104. Capogna, M., Gähwiler, B. H., and Thompson, S. M. 1996. Presynaptic inhibition of calcium-dependent and calcium-dependent and calcium-independent release elicited with ionomycin, gadolinium, and α-latrotoxin in the hippocampus. J. Neurophysiol. 75:2017-2028.

    PubMed  Google Scholar 

  105. Dittman, J. S. and Regehr, W. G. 1996. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J. Neurosci. 16:1623-1633.

    PubMed  Google Scholar 

  106. Silinsky, E. M., Hirsh, J. K., Searl, T. J., Redman, R. S., and Watanabe, M. 1999. Quantal ATP release from motor nerve endings and its role in neurally mediated depression. Prog. Brain Res. 120:145-158.

    PubMed  Google Scholar 

  107. Tetzlaff, W., Schubert, G. W., and Kreutzberg, G. W. 1987. Synaptic and extrasynaptic localization of adenosine binding sites in the rat hippocampus. Neuroscience 21:869-875.

    PubMed  Google Scholar 

  108. de Mendonça, A., Sebastião, A. M., and Ribeiro, J. A., 1995. Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurons by adenosine A1 receptor activation. Neuroreport 6:1097-1100.

    PubMed  Google Scholar 

  109. Klishin, A., Tsintsadze, T., Lozovaya, N., and Krishtal, O. 1995. Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca2+-dependent activation by blocking A1 adenosine receptors. Proc. Natl. Acad. Sci. USA 92:12431-12435.

    PubMed  Google Scholar 

  110. Mogul, D. J., Adams, M. E., and Fox, A. P. 1993. Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ currents in hippocampal CA3 neurons. Neuron 10:327-334.

    PubMed  Google Scholar 

  111. McCool, B. A. and Farroni, J. S. 2001. A1 adenosine receptors inhibit multiple voltage-gated Ca2+ channel subtypes in acutely isolated rat basolateral amygdala neurons. Br. J. Pharmacol. 132:879-888.

    PubMed  Google Scholar 

  112. de Mendonça, A. and Ribeiro, J. A. 2001. Adenosine and synaptic plasticity. Drug Dev. Res. 52:283-290.

    Google Scholar 

  113. de Mendonca, A., Sebastião, A. M., and Ribeiro, J. A. 2000. Adenosine: Does it have a neuroprotective role after all? Brain Res. Rev. 33:258-274.

    PubMed  Google Scholar 

  114. Sebastião, A. M., de Mendonça, A., Moreira, T., and Ribeiro, J. A. 2001. Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J. Neurosci. 21:8564-8571.

    PubMed  Google Scholar 

  115. Gerber, U. and Gahwiler, B. H. 1994. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72:2360-2367.

    PubMed  Google Scholar 

  116. Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C., and Nicoll, R. A. 1997. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687-695.

    PubMed  Google Scholar 

  117. Wetherington, J. P. and Lambert, N. A. 2002. Differential desensitisation of responses mediated by presynaptic and postsynaptic A1 adenosine receptors. J. Neurosci. 22:1248-1255.

    PubMed  Google Scholar 

  118. Barraco, R. A., Swanson, T. H., Phillis, J. W., and Berman, R. F. 1984. Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats. Neurosci. Lett. 46:317-322.

    PubMed  Google Scholar 

  119. Dragunow, M. and Goddard, G. V. 1984. Adenosine modulation of amygdala kindling. Exp. Neurol. 84:654-665.

    PubMed  Google Scholar 

  120. Dragunow, M., Goddard, G. V. and Laverty, R. 1985. Is adenosine an endogenous anticonvulsant? Epilepsia 26:480-487.

    PubMed  Google Scholar 

  121. Dunwiddie, T. V. and Worth, T. 1982. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J. Pharmacol. Exp. Ther. 220:70-76.

    PubMed  Google Scholar 

  122. Eldridge, F. L., Paydarfar, D., Scott, S. C., and Dowell, R. T. 1989. Role of endogenous adenosine in recurrent generalized seizures. Exp. Neurol. 103:179-185.

    PubMed  Google Scholar 

  123. Franklin, P. H., Zhang, G., Tripp, E. D., and Murray, T. F. 1989. Adenosine A1 receptor activation mediates suppresion of (-)-bicuculline methiodide-induced seizures in rat prepiriform cortex. J. Pharmacol. Exp. Ther. 251:1229-1236.

    PubMed  Google Scholar 

  124. Khan, G. M., Smolders, I., Ebinger, G., and Michotte, Y. 2001 2-Chloro-N 6-cyclopentyladenosine-elicited attenuation of evoked glutamate release is not sufficient to give complete protection against pilocarpine-induced seizures in rats. Neuropharmacology 40:657-667.

    PubMed  Google Scholar 

  125. Maitre, M., Chesielski, L., Lehmann, A., Kempf, E., and Mandel, P. 1974. Protective effect of adenosine and nicotinamide against audiogenic seizures. Biochem. Pharmacol. 23:2807-2816.

    PubMed  Google Scholar 

  126. Petersen, E. N. 1991. Selective protection by adenosine agonists of DMCM-induced seizures. Eur. J. Pharmacol. 195:256-261.

    Google Scholar 

  127. Rosen, L. B. and Berman, R. F. 1987. Differential effects of adenosine analogs on amygdala, hippocampus and caudate nucleus kindled seizures. Epilepsia 28:658-666.

    PubMed  Google Scholar 

  128. Simonato, M., Varani, K., Muzzolini, A., Bianchi, C., Beani, L. and Borea, P. A. 1994. Adenosine A1 receptors in the rat brain in the kindling model of epilepsy. Eur. J. Pharmacol. 265:121-124.

    PubMed  Google Scholar 

  129. Turski, W. A., Cavalheiro, E. A., Ikonomidou, C., Moraes-Mello, L. E. A., Bortolotto, Z. A., and Turski, L. 1985. Effects of aminophylline and 2-chloroadenosine on seizures produced by pilocarpine in rats: Morphological and electroencephalographic correlates. Brain Res. 361:309-323.

    PubMed  Google Scholar 

  130. von Lubitz, D. K., Paul, I. A., Carter, M., and Jacobson, K. A. 1993. Effects of N 6-cyclopentyl adenosine and 8-cyclopentyl-1,3-dipropylxanthine on N-methyl-D-asparte-induced seizures in mice. Eur. J. Pharmacol. 249:265-270.

    PubMed  Google Scholar 

  131. Young, D. and Dragunow, M. 1994. Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience 58:245-261.

    PubMed  Google Scholar 

  132. Dunwiddie, T. V. 1999. Adenosine and suppression of seizures. Pages 1001-1010, in Delgado-Escueta, A. V., Wilson, W. A., Olsen, R. W., and Porter, R. J. (eds.), Jasper's Basic Mechanisms of the Epilepsies, 3rd ed., Advances in Neurology, Vol. 79, Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  133. Dragunow, M. 1988. Purinergic mechanisms in epilepsy. Prog. Neurobiol. 31:85-108.

    PubMed  Google Scholar 

  134. Ault, B. and Wang, C. M. 1986. Adenosine inhibits epileptiform activity arising in hippocampal area CA3. Br. J. Pharmacol. 87:695-703.

    PubMed  Google Scholar 

  135. Lee, K. S., Schubert, P., and Heinemann, U. 1984. The anticonvulsant action of adenosine: A postsynaptic dendritic action by a possible endogenous anticonvulsant. Brain Res. 321:160-164.

    PubMed  Google Scholar 

  136. Tancredi, V., D'Antuono, M., Nehlig, A., and Avoli, M. 1998. Modulation of epileptiform activity by adenosine A1 receptor-mediated mechanisms in the juvenile rat hippocampus. J. Pharmacol. Exp. Ther. 286:1412-1419.

    PubMed  Google Scholar 

  137. Dragunow, M. 1986. Adenosine: The brain's natural anticonvulsant. Trends Pharmacol. Sci. 7:128-130.

    Google Scholar 

  138. Chu, N. S. 1981. Caffeine-and aminophylline-induced seizures. Epilepsia 22:85-94.

    PubMed  Google Scholar 

  139. Dragunow, M. and Robertson, H. A. 1987. 8-Cyclopentyl-1,3-dimethylxanthine prolongs epileptic seizures in rats. Brain Res. 417:377-379.

    PubMed  Google Scholar 

  140. Francis, A. and Fochtmann, L. 1994. Caffeine augmentation of electroconvulsive seizures. Psycopharmacology 115:320-324.

    Google Scholar 

  141. Kostopoulos, G., Drapeau, C., Avoli, M., Olivier, A., and Villemeure, J. G. 1989. Endogenous adenosine can reduce epileptiform activity in the human epileptogenic cortex maintained in vitro. Neurosci. Lett. 106:119-124.

    PubMed  Google Scholar 

  142. Mori, H., Mizutani, T., Yoshimura, M., Yamanouchi, H., and Shimada, H. 1992. Unilateral brain damage after prolonged hemiconvulsions in the elderly associated with theophylline administration. J. Neurol. Neurosurg. Psychiatry 55:466-469.

    PubMed  Google Scholar 

  143. Peters, S. G., Wochos, D. N., and Peterson, G. C. 1984. Status epilepticus as a complication of concurrent electroconvulsive and theophylline therapy. Mayo Clin. Proc. 59:568-570.

    PubMed  Google Scholar 

  144. Whitcomb, K., Lupica, C. R., Rosen, J. B., and Berman, R. F. 1990. Adenosine involvement in postictal events in amygdala-kindled rats. Epilepsy Res. 6:171-179.

    PubMed  Google Scholar 

  145. Alzheimer, C., Sutor, B., and ten Bruggencate, G. 1993. Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: Pre-and postsynaptic components. Neuroscience 57:565-575.

    PubMed  Google Scholar 

  146. Ault, B., Olney, M. A., Joyner, J. L., Boyer, C. E., Notrica, M. A., Soroko, F. E., and Wang, C. M. 1987. Pro-convulsant actions of theophylline and caffeine in the hippocampus: Implications for the management of temporal lobe epilepsy. Brain Res. 426:93-102.

    PubMed  Google Scholar 

  147. Chesi, A. J. R. and Stone, T. W. 1997. Alkylxanthine adenosine antagonists and epileptiform activity in rat hippocampal slices in vitro. Exp. Brain Res. 113:303-310.

    PubMed  Google Scholar 

  148. Berman, R. F., Fredholm, B. B., Aden, U., and O'Connor, W. T. 2000. Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res. 872:44-53.

    PubMed  Google Scholar 

  149. During, M. J., and Spencer, D. D. 1992. Adenosine: A potential mediator of seizure arrest and postictal refractoriness. Ann. Neurol. 32:618-624.

    PubMed  Google Scholar 

  150. Lewin, E. and Bleck, V. 1981. Electroshock seizures in mice: Effect on brain adenosine and its metabolites. Epilepsia 22:577-581.

    PubMed  Google Scholar 

  151. Park, T. S., van Wylen, D. G. L., Rubio, R., and Berne, R. M. 1987. Interstitial fluid adenosine and sagital sinus blood flow during bicuculline-seizures in newborn piglets. J. Cereb. Blood Flow Metabol. 7:633-639.

    Google Scholar 

  152. Schrader, J., Wahl, M., Kuschinsky, W., and Kreutzberg, G. N. 1980. Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pflügers Arch. 387:245-251.

    Google Scholar 

  153. Winn, H. R., Welsh, J. E., Bryner, C., Rubio, R., and Berne, R. N. 1979. Brain adenosine production during the initial 60 seconds of bicuculline seizures in rats. Acta Physiol. Scand. 72:536-537.

    Google Scholar 

  154. Winn, H. R., Welsh, J. E., Rubio, R., and Berne, R. N. 1980. Changes in brain adenosine during bicuculline-induced seizures in rats: Effects of hypoxia and altered systemic blood pressure. Circ. Res. 47:868-877.

    Google Scholar 

  155. Kulkarni, C., David, J., and Joseph, T. 1994. Involvement of adenosine in postictal events in rats given electroshock. Indian J. Physiol. Pharmacol. 38:39-43.

    PubMed  Google Scholar 

  156. Fredholm, B. B. 1997. Adenosine and neuroprotection. Int. Rev. Neurobiol. 40:259-280.

    PubMed  Google Scholar 

  157. Brodie, M. S., Lee, K. S., Fredholm, B. B., Stahle L., and Dunwiddie, T. V. 1987. Central versus peripheral mediation of responses to adenosine receptor agonists: Evidence against a central mode of action. Brain Res. 415:323-330.

    PubMed  Google Scholar 

  158. Katims, J. J., Annau, Z., and Snyder, S. H. 1983. Interactions in the behavioral effects of methylxanthines and adenosine derivatives. J. Pharmacol. Exp. Ther. 227:167-17

    PubMed  Google Scholar 

  159. Malhotra, J. and Gupta, Y. K. 1997. Effect of adenosine receptor modulation on pentylenetetrazole-induced seizures in rats. Br. J. Pharmacol. 120:282-288.

    PubMed  Google Scholar 

  160. Huber, A., Padrum, V., Déglon, N., Aebischer, P., Mölher, H., and Boison, D. 2001. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc. Natl. Acad. Sci. USA 98:7611-7616.

    PubMed  Google Scholar 

  161. Ashton, D., de Prins, E., Willems, R., van Belle, H., and Wauquier, A. 1988. Anticonvulsant action of the nucleoside transport inhibitor, soluflazine, on synaptic and non-synaptic epileptogenesis in the guinea-pig hippocampus. Epilepsy Res. 2:65-71.

    PubMed  Google Scholar 

  162. Zhang, G., Franklin, P. H., and Murray, T. F. 1993. Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility. J. Pharmacol. Exp. Ther. 264:1415-1424.

    PubMed  Google Scholar 

  163. Wiesner, J. B., Ugarkar, B. G., Castellino, A. J., Barankiewicz, J., Dumas, D. P., Gruber, H. E., Foster, A. C., and Erion, M. D. 1999. Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J. Pharmacol. Exp. Ther. 289:1669-1677.

    PubMed  Google Scholar 

  164. Szot, P., Sanders, R. C., and Murray, T. F. 1987. Theophylline-induced upregulation of A1-adenosine receptors associated with reduced sensitivity to anticonvulsants. Neuropharmacology 26:1173-1180.

    PubMed  Google Scholar 

  165. Janusz, C. A. and Berman, R. F. 1993. The adenosine binding enhancer, PD 81,723, inhibits epileptiform bursting in the hippocampal brain slice. Brain Res. 619:131-136.

    PubMed  Google Scholar 

  166. Ekonomou, A., Angelatou, F., Vergnes, M., and Kostopoulos, G. 1998. Lower density of A1 adenosine receptors in nucleus reticularis thalami in rats with genetic absence epilepsy. Neuroreport 9:2135-2140.

    PubMed  Google Scholar 

  167. Ekonomou, A., Sperk, G., Kostopoulos, G., and Angelatou, F. 2000. Reduction of A1 adenosine receptors in rat hippocampus after kainic acid-induced limbic seizures. Neurosci. Lett. 284:49-52.

    PubMed  Google Scholar 

  168. Glass, M., Faull, R. L. M., Bullock, J. Y., Jansen, K., Mee, E. W., Walker, E. B., Synek, B. J. L., and Dragunow, M. 1996. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res. 710:56-68.

    PubMed  Google Scholar 

  169. Ochiisshi, T., Takita, M., Ikemoto, M., Nakata, H., and Suzuki, S. S. (1999) Immunohistochemical analysis on the role of adenosine A1 receptors in epilepsy. Neuroreport 10:3535-3541.

    PubMed  Google Scholar 

  170. Angelatou, F., Pagonopoulou, O., and Kostopoulos, G. 1990. Alterations of A1 adenosine receptors in different mouse brain areas afer pentylentetrazol-induced seizures, but not in the epileptic mutant mouse 'tottering.' Brain Res. 534:251-256.

    PubMed  Google Scholar 

  171. Daval, J. L. and Werck, M. C. 1991. Autoradiographic changes in brain adenosine A1 receptors and their coupling to G proteins following seizures in the developing rat. Dev. Brain Res. 59:237-247.

    Google Scholar 

  172. Vanore, G., Giraldez, L., Rodriguez de Lores Arnaiz, G., and Girardi, E. 2001. Seizure activity produces differential changes in adenosine A1 receptors within rat hippocampus. Neurochem. Res. 26:225-230.

    PubMed  Google Scholar 

  173. Cunha, R. A., Coelho, J. E., Costenla, A. R., Lopes, L. V., Parada, A., Soares-da-Silva, P., and de Mendonça, A. 2002. Modification of the extracellular metabolism and inhibitory effect of adenosine in the hippocampus of kindled rats. Proc. 3rd Forum Eur. Neurosci.

  174. Wieraszko, A. and Seyfried, T. N. 1989. Increased amount of extracellular ATP in stimulated hippocampal slices of seizure prone mice. Neurosci. Lett. 106:287-293.

    PubMed  Google Scholar 

  175. Vianna, E. P., Ferreira, A. T., Naffah-Mazzacoratti, M. G., Sanabria, E. R., Funke, M., Cavalheiro, E. A., and Fernandes, M. J. 2002. Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: Fluorimetric, immunohistochemical, and Western blot studies. Epilepsia 43(Suppl. 5): 227-229.

    PubMed  Google Scholar 

  176. Bonan, C. D., Amaral, O. B., Rockenbach, I. C., Walz, R., Battastini, A. M., Izquierdo, I., and Sarkis, J. J. 2000. Altered ATP hydrolysis induced by pentylenetetrazol kindling in rat brain synaptosomes. Neurochem. Res. 25:775-779.

    PubMed  Google Scholar 

  177. Bonan, C. D., Walz, R., Pereira, G. S., Worm, P. V., Battastini, A. M., Cavalheiro, E. A., Izquierdo, I., and Sarkis, J. J. 2000. Changes in synaptosomal ectonucleotidase activities in two rat models of temporal lobe epilepsy. Epilepsy Res. 39:229-238.

    PubMed  Google Scholar 

  178. Nagy, A. K., Houser, C. R., and Delgado-Escueta, A. V. 1990. Synaptosomal ATPase activities in temporal cortex and hippocampal formation of humans with focal epilepsy. Brain Res. 529:192-201.

    PubMed  Google Scholar 

  179. Schoen, S. W., Ebert, U., and Loscher, W. 1999. 5′-NucleotiPharmacology of adenosine dase activity in mossy fibers in the dentate gyrus of normal and epileptic rats. Neuroscience 93:519-526.

    PubMed  Google Scholar 

  180. Pagonopoulou, O. and Angelatou, F. 1998. Time development and regional distribution of [3H]nitrobenzylthioinosine adenosine uptake binding in the mouse brain after acute pentylenetetrazol-induced seizures. J. Neurosci. Res. 53:433-442.

    PubMed  Google Scholar 

  181. Cunha, R. A., Correia-de-Sá, P., Sebastião, A. M., and Ribeiro, J. A. 1996. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Br. J. Pharmacol. 119:253-260.

    PubMed  Google Scholar 

  182. Fredholm, B. B., Cunha, R. A., and Svenningsson, P. 2002. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 3:1349-1364.

    Google Scholar 

  183. Adami, M., Bertorelli, R., Ferri, N., Foddi, M. C., and Ongini, E. 1995. Effects of repeated administration of selective adenosine A1 and A2A receptor agonists on pentylenetetrazole-induced convulsions in the rat. Eur. J. Pharmacol. 294:383-389.

    PubMed  Google Scholar 

  184. De Sarro, G., De Sarro, A., Paola, E. D., and Bertorelli, R. 1999. Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice. Eur. J. Pharmacol. 371:137-145.

    PubMed  Google Scholar 

  185. Huber, A., Güttinger, M., Möhler, H., and Boison, D. 2002. Seizure suppression by adenosine A2A receptor activation in a rat model of audiogenic brainstem epilepsy. Neurosci. Lett. 329:289-292.

    PubMed  Google Scholar 

  186. Klitgaard, H., Knutsen, L. J. S., and Thomsen, C. 1993. Contrasting effects of adenosine A1 and A2 receptor ligands in different chemoconvulsive rodent models. Eur. J. Pharmacol. 242:221-228.

    PubMed  Google Scholar 

  187. Morgan, P. F. and Durcan, M. J. 1990. Caffeine-induced seizures: Apparent proconvulsant action of N-ethylcarboxamidoadenosine (NECA). Life Sci. 47:1-8.

    PubMed  Google Scholar 

  188. Zgodzinski, W., Rubaj, A., Kleinrok, Z., and Sieklucka-Dziuba, M. 2001. Effect of adenosine A1 and A2 receptor stimulation on hypoxia-induced convulsions in adult mice. Pol. J. Pharmacol. 53:83-92.

    PubMed  Google Scholar 

  189. Zhang, G., Franklin, P. H., and Murray, T. F. 1994. Activation of adenosine A1 receptor underlies anticonvulsant effect of CGS21680. Eur. J. Pharmacol. 255:239-243.

    PubMed  Google Scholar 

  190. El Yacoubi, M., Ledent, C., Parmentier, M., Daoust, M., Costentin, J., Vaugeois, J. M. 2001. Absence of the adenosine A2A receptor or its chronic blockade decrease ethanol withdrawal-induced seizures in mice. Neuropharmacology 40:424-432.

    PubMed  Google Scholar 

  191. Vaugeois, J. M., Benmaamar, R., Depaulis, A., Ledent, C., Parmentier, M., Costentin, J., and El Yacoubi, M. 2002. Adenosine A2A receptor deficient mice are more resistant to seizures. Proc. 3rd Forum Eur. Neurosci.

  192. Behan, W. M. H. and Stone, T. W. 2002. Enhanced neuronal damage by co-administration of quinolinic acid and free radicals, and protection by adenosine A2A receptor antagonists. Br. J. Pharmacol. 135:1435-1442.

    PubMed  Google Scholar 

  193. Chen, J. F., Huang, Z., Ma, J., Zhu, J., Moratalla, R., Standaert, D., Moskowitz, M. A., Fink, J. S., and Schwarzschild, M. A. 1999. A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J. Neurosci. 19:9192-9200.

    PubMed  Google Scholar 

  194. Chen, J. F., Xu, K., Petzer, J. P., Staal, R., Xu, Y. H., Beilstein, M., Sonsalla, P. K., Castagnoli, K., Castagnoli, N. Jr., and Schwarzschild, M. A. 2001. Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson's disease. J. Neurosci. 21:RC143.

    PubMed  Google Scholar 

  195. Dall'Igna, O. P., Porciúncula, L. O., Souza, D. O., Cunha, R. A., and Lara, D. R. 2003. Neuroprotection by caffeine and adenosine A2A receptor blockade of β-amyloid neurotoxicity. Br. J. Pharmacol. in press.

  196. Ikeda, K., Kurokawa, M., Aoyama, S., and Kuwana, Y. 2002. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease. J. Neurochem. 80:262-270.

    PubMed  Google Scholar 

  197. Monopoli, A., Lozza, G., Forlani, A., Mattavelli, A., and Ongini, E. 1998. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 9:3955-3959.

    PubMed  Google Scholar 

  198. Popoli, P., Pintor, A., Domenici, M. R., Frank, C., Tebano, M. T., Pezzola, A., Scarchilli, L., Quarta, D., Reggio, R., Malchiodi-Albedi, F., Falchi, M., and Massotti, M. 2002. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: Possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J. Neurosci. 22:1967-1975.

    PubMed  Google Scholar 

  199. Reggio, R., Pezzola, A., and Popoli, P. 1999. The intrastriatal injection of an adenosine A2 receptor antagonist prevents frontal cortex EEG abnomalities in a rat model of Huntington's disease. Brain Res. 831:315-318.

    PubMed  Google Scholar 

  200. Cunha, R. A., Johansson, B., van der Ploeg, I., Sebastião, A. M., Riberio, J. A., and Fredholm, B. B. 1994. Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res. 649:208-216.

    PubMed  Google Scholar 

  201. Kobayashi, S. and Millhorn, D. E. 1999. Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells; A potential role in cell protection. J. Biol. Chem. 274:20358-20365.

    PubMed  Google Scholar 

  202. Rebola, N., Soares-da-Silva, P., Oliveira, C. R., and Cunha, R. A. 2002. Increased density of adenosine A2A receptors in the cerebral cortex of kindled rats. Proc. 23th Meet. Portuguese Pharmacol. Soc. C64.

  203. Diógenes, M. J., Sebastião, A. M., and Ribeiro, J. A. 2002. Brain derived neurotrophic factor facilitates synaptic transmission in rat hippocampus through A2A adenosine receptor activation. Proc. 23th Meet. Portuguese Pharmacol. Soc. C66.

  204. Lee, F. S. and Chao, M. V. 2001. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA 98:3555-3560.

    PubMed  Google Scholar 

  205. Ernfors, P., Bengzon, J., Kokais, Z., Persson, H., and Lindvall, O. 1991. Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7:165-176.

    PubMed  Google Scholar 

  206. Kokaia, M., Ernfors, P., Kokaia, Z., Elmer, E., Jaenisch, R., and Lindvall, O. 1995. Suppressed epileptogenesis in BDNF mutant mice. Exp. Neurol. 133:215-224.

    PubMed  Google Scholar 

  207. Binder, D. K., Routbort, M. J., Ryan, T. E., Yancopoulos, G. D., and McNamara, J. O. 1999. Selective inhibition of kindling development by intraventricular administration of TrkB receptor body. J. Neurol. Sci. 19:1424-1436.

    Google Scholar 

  208. Halldner, L., Lozza, G., Lindström, K., and Fredholm, B. B. 2000. Lack of tolerance to motor stimulant effects of a selective adenosine A2A receptor antagonist. Eur. J. Pharmacol. 406:345-354.

    PubMed  Google Scholar 

  209. Pinna, A., Fenu, S., and Morelli, M. 2001. Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 39:233-238.

    Google Scholar 

  210. Popoli, P., Reggio, R., and Pezzola, A. 2000. Effects of SCH 58261, an adenosine A2A receptor antagonist, on quinpirole-induced turning in 6-hydroxydopamine-lesioned rats: Lack of tolerance after chronic caffeine intake. Neuropsychopharmacology 22:522-529.

    PubMed  Google Scholar 

  211. Lopes, L. V., Cunha, R. A., and Ribeiro, J. A. 1999. Increase in the number, G protein coupling, and efficiency of facilitatory adenosine A2A receptors in the limbic cortex, but not striatum, of aged rats. J. Neurochem. 73:1733-1738.

    PubMed  Google Scholar 

  212. Rebola, N., Sebastião, A. M., de Mendonça, A., Oliveira, C. R., Ribeiro, J. A., and Cunha, R. A. 2003. Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J. Neurophysiol. in press.

  213. Kimmel, J. R., Hayden, L. J., and Pollock, H. G. 1975. Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem. 250:9369-9374.

    PubMed  Google Scholar 

  214. Larhammar, D., Blomqvist, A. G., and Söderberg, C. 1993. Evolution of neuropeptide Y and its related peptides. Comp. Biochem. Physiol. 106C:743-752.

    Google Scholar 

  215. Larhammar, D., Söderberg, C., and Blomqvist, A. G. 1993. Evolution of neuropeptide Y family of peptides. Pages 1-41, in Colmers, W. F. and Wahlestedt, C. (eds.), The Biology of Neuropeptide Y and Related Peptides, Humana Press, Totowa, New Jersey.

    Google Scholar 

  216. Allen, J. M. and Baldi, D. 1993. Structure and expression of the neuropeptide Y gene. Pages 43-64, in Colmers, W. F. and Wahlestedt, C. (eds.). The Biology of Neuropeptide Y and Related Peptides, Humana Press, Totowa, New Jersey.

    Google Scholar 

  217. Sundler, F., Böttcher, G., Ekblad, E., and Håkanson, R. 1993. PP, PYY and NPY: Occurrence and distribution in the periphery. Pages 157-196, in Colmers, W. F. and Wahlestedt, C. (eds.), The Biology of Neuropeptide Y and Related Peptides, Humana Press, Totowa, New Jersey.

    Google Scholar 

  218. Lundberg, J. M. 1996. Pharmacology and cotransmission in the autonomic nervous system: Integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol. Rev. 48:113-178.

    PubMed  Google Scholar 

  219. Michel, M. C., Beck-Sickinger, A., Cox, H., Doods, H. N., Herzog, H., Larhammar, D., Quirion, R., Schwartz, T., and Westfall, T. 1998. XVI. International union of pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Revi. 50:143-150.

    Google Scholar 

  220. Larhammar, D. 1996. Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide. Regul. Pept. 65:165-174.

    PubMed  Google Scholar 

  221. Schwarzer, C., Sperk, G., Rizzi, M., Gariboldi, M., and Vezzani, A. 1996. Neuropeptides-immunoractivity and their mRNA expression in kindling: Functional implications for limbic epileptogenesis. Brain Res. Rev. 22:27-50.

    PubMed  Google Scholar 

  222. Vezzani, A., Sperk, G., and Colmers, W. F. 1999. Neuropeptide Y: Emerging evidence for a functional role in seizure modulation. Trends Neurosci. 22:25-30.

    PubMed  Google Scholar 

  223. Gruber, G., Greber, S., Rupp, E., and Sperk, G. 1994. Differential NPY mRNA expression in granule cells and interneurons of the rat dentate gyrus after kainic acid injection. Hippocampus 4:474-482.

    PubMed  Google Scholar 

  224. Takahashi, Y., Tsunashima, K., Sadamatsu, M., Schwarzer, C., Amano, S., Ihara, N., Sasa, M., Kato, N., and Sperk, G. 2000. Altered hippocampal expression of neuropeptide Y, somastotatin, and glutamate decarboxylase in Ihara's epileptic rats and spontaneously epileptic rats. Neurosci. Lett. 287:105-108.

    PubMed  Google Scholar 

  225. Klapstein, G. J. and Colmers, W. F. 1997. Neuropeptide Y suppresses epileptiform activity in rat hippocampus in vitro. J. Neurophysiol. 78:1651-1661.

    PubMed  Google Scholar 

  226. Patrylo, P. R., Van Den Pol, A. N., Spencer, D. D., and Williamson, A. 1999. NPY inhibits glutamatergic excitation in the epileptic human dentate gyrus. J. Neurophysiol. 82:478-483.

    PubMed  Google Scholar 

  227. Van den Pol, A. N., Obrietan, K., Chen, G., and Belousov, A. B. 1996. Neuropeptide Y-mediated long-term depression of excitatory activity in suprachiasmatic nucleus neurons. J. Neurosci. 16:5883-5895.

    PubMed  Google Scholar 

  228. Baraban, S. C., Hollopeter, G., Erickson, J. C., Schwartzkroin, P. A., and Palmiter, R. D. 1997. Knock-out mice reveal a critical antiepileptic role for neuropeptide Y. J. Neurosci. 17:8927-8936.

    PubMed  Google Scholar 

  229. Vezzani, A., Michalkiewicz, M., Michalkiewicz, T., Moneta, D., Ravizza, T., Richichi, C. et al. 2002. Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y. Neuroscience 110:237-243.

    PubMed  Google Scholar 

  230. Colmers, W. F., Klapstein, G. J., Fournier, A., St-Pierre, S., and Treherne, K. A. 1991. Presynaptic inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor. Br. J. Pharmacol. 102:41-44.

    PubMed  Google Scholar 

  231. Woldbye, D. P. D., Larsen, P. J., Mikkelsen, J. D., Klemp, K., Madsen, T. M., and Bolwig, T. G. 1997. Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Nat. Med. 3:761-764.

    PubMed  Google Scholar 

  232. Kopp, J., Nanobashvili, A., Kokaia, Z., Lindvall, O., and Hökfelt, T. 1999. Differential regulation of mRNAs for neuropeptide Y and its receptor subtypes in widespread areas of the rat limbic system during kindling epileptogenesis. Mol. Brain Res. 72:17-29.

    PubMed  Google Scholar 

  233. Röder, C., Schwarzer, C., Vezzani, A., Gobbi, M., Minnini, T., and Sperk, G. 1996. Autoradiographic analysis of neuropeptide Y receptor binding sites in the rat hippocampus after kainic acid-induced limbic seizures. Neuroscience 70:47-55.

    PubMed  Google Scholar 

  234. Bleakman, D., Harrison, N. L., Colmers, W. F., and Miller, R. J. 1992. Investigations into neuropeptide Y-mediated presynaptic inhibition in cultured hippocampal neurones of the rat. Br. J. Pharmacol. 107:334-340.

    PubMed  Google Scholar 

  235. McQuiston, A. R. and Colmers, W. F. 1996. Neuropeptide Y2 receptors inhibit the frequency of spontaneous but not miniature EPSCs in CA3 pyramidal cells of rat hippocampus. J. Neurophysiol. 76:3159-3168.

    PubMed  Google Scholar 

  236. Vezzani, A., Rizzi, M., Conti, M., and Samanin, R. 2000. Modulatory role of neuropeptide in seizures induced in rats by stimulation of glutamate receptors. Am. Soc. Nutri. Sci. 7402:1046S-1048S.

    Google Scholar 

  237. McQuiston, A. R., Petrozzino, J. J., Connor, J. A., and Colmers, W. F. 1996. Neuropeptide Y1 receptors inhibit N-type calcium currents and reduce transient calcium increases in rat dentate granule cells. J. Neurosci. 16:1422-1429.

    PubMed  Google Scholar 

  238. Gariboldi, M., Conti, M., Cavaleri, D., Samanin, R., and Vezzani, A. 1998. Anticonvulsant properties of BIBP3226, a non-peptide selective antagonist at neuropeptide Y Y1 receptors. Eur. J. Neurosci. 10:757-759.

    PubMed  Google Scholar 

  239. Brooks, P. A., Kelly, J. S., Allen, J. M., Smith, D. A. S., and Stone, T. W. 1987. Direct excitatory effects of neuropeptide Y (NPY) in rat hippocampal neurons in vitro. Brain Res. 408:295-298.

    PubMed  Google Scholar 

  240. Weiser, T., Wieland, H. A., and Doods, H. N. 2000. Effects of the neuropeptide Y Y2 receptor antagonist BIIE0246 on presynaptic inhibition by neuropeptide Y in rat hippocampal slices. Eur. J. Pharmacol. 404:133-136.

    PubMed  Google Scholar 

  241. Silva, A. P., Carvalho, A. P., Carvalho, C. M., and Malva, J. O. 2001. Modulation of intracellular calcium changes and glutamate release by neuropeptide Y1 and Y2 receptors in the rat hippocampus: Differential effects in CA1, CA3 and dentate gyrus. J. Neurochem. 79:286-296.

    PubMed  Google Scholar 

  242. Greber, S., Schwarzer, C., and Sperk, G. 1994. Neuropeptide Y inhibits potassium-stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. Br. J. Pharmacol. 113:737-740.

    PubMed  Google Scholar 

  243. Silva, A. P., Carvalho, A. P., Carvalho, C. M., and Malva, J. O. 2003. Functional interaction between neuropeptide Y receptors and modulation of calcium channels in the rat hippocampus. Neuropharmacology (in press).

  244. Marsh, D. J., Baraban, S. C., Hollopeter, G., and Palmiter, R. D. 1999. Role of the Y5 neuropeptide Y receptor in limbic seizures. Proc. Natl. Acad. Sci. USA 96:13518-13523.

    PubMed  Google Scholar 

  245. Guo, H., Castro, P. A., Palmiter, R. D., and Baraban, S. C. 2002. Y5 receptors mediate neuropeptide Y actions at excitatory synapses in area CA3 of the mouse hippocampus. J. Neurophysiol. 87:558-566.

    PubMed  Google Scholar 

  246. Dinger, M. C., Bader, J. E., Kobor, A. D., Kretzschmar, A. K., and Beck-Sickinger, A. G. 2003. Homodimerization of neuropeptide Y receptors investigated by fluorescence resonance energy transfer in living cells. J. Biol. Chem. (in press).

  247. Silva, A. P., Pinheiro, P. S., Carvalho, A. P., Carvalho, C. M., Jakobsen, B., Zimmer, J. and Malva, J. O. 2003. Activation of neuropeptide Y receptors is neuroprotective against excitoxicity in organotypic hippocampal slice cultures. FASEB J. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João O. Malva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malva, J.O., Silva, A.P. & Cunha, R.A. Presynaptic Modulation Controlling Neuronal Excitability and Epileptogenesis: Role of Kainate, Adenosine and Neuropeptide Y Receptors. Neurochem Res 28, 1501–1515 (2003). https://doi.org/10.1023/A:1025618324593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025618324593

Navigation