Skip to main content
Log in

Positron emission tomography (PET): Expanding the horizons of oncology drug development

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) allows three-dimensional quantitative determination of the distribution of radioactivity permitting measurement of physiological, biochemical, and pharmacological functions at the molecular level. Until recently, no method existed to directly and noninvasively assess transport and metabolism of neoplastic agents as a function of time in various organs as well as in the tumor. Standard preclinical evaluation of potential anticancer agents entails radiolabeling the agent, usually with tritium or 14C, sacrifice experiments, and high-performance liquid chromatography (HPLC) analysis to determine the biodistribution and metabolism in animals. Radiolabeling agents with positron-emitting radionuclides allows the same information to be obtained as well as in vivo pharmacokinetic (PK) data by animal tissue and plasma sampling in combination with PET scanning. In phase I/II human studies, classic PK measurements can be coupled with imaging measurements to define an optimal dosing schedule and help formulate the design of phase III studies that are essential for drug licensure [1]. Many of the novel agents currently in development are cytostatic rather than cytotoxic and therefore, the traditional standard endpoints in phase I and II studies may no longer be relevant. The use of a specialized imaging modality that allows PK and pharmacodynamic (PD) evaluation of a drug of interest has been proposed to permit rapid and sensitive assessment of the biological effects of novel anticancer agents. The progress to date and the challenges of incorporating PET technology into oncology drug development from the preclinical to clinical setting are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischman A, Alpert N, Babich J, Rubin R: The role of positron emission tomography in pharmacokinetic analysis. Drug Metab Rev 29: 923–956, 1997

    Google Scholar 

  2. Cherry S, Shao Y, Silverman R, Chatziioannon A, Meadors K, Siegel S, Boutefnouchet A, Faraquahr T, Young J, Jones W, Newport D, Moyers C, Andraeco M, Paulus M, Binkley D, Nutt R, Phelps M: MicroPET: a high-resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44: 1161–1166, 1997

    Google Scholar 

  3. Ranney D: Biomimetic transport and rational drug delivery. Biochem Pharmacol 59: 105–114, 2000

    Google Scholar 

  4. Sols A, Crane RK: Substrate specificity of brain hexokinase. J Biol Chem 210: 581–595, 1954

    Google Scholar 

  5. Higashi K, Clavo AC, Wahl RL: Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison of DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34: 414–419, 1993

    Google Scholar 

  6. Brown RS, Fisher SJ, Wahl RL: Autoradiographic evaluation of the intra-tumoral distribution of 2–deoxy-D-glucose and monoclonal antibodies in xenografts of human ovarian adenocarcinoma. J Nucl Med 34: 75–82, 1993

    Google Scholar 

  7. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL: Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between glut-1 expression and FDG uptake. J Nucl Med 37: 1042–1047, 1996

    Google Scholar 

  8. Wahl R, Zasadny K, Helvie M, Hutchins G, Weber B, Cody R: Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11: 2101–2111, 1993

    Google Scholar 

  9. Bassa P, Kim E, Inoue T, Wong F, Kormaz M, Yang D, Wong W, Hicks K, Buzdar A, Podoloff D: Evaluation of preoperative chemotherapy using PET with fluorine-18–fluorodeoxyglucose in breast cancer. J Nucl Med 37: 931–938, 1996

    Google Scholar 

  10. Jansson T, Westlin J, Ahlstrom H, Lilja A, Langstrom B, Bergh J: Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 13: 1470–1477, 1995

    Google Scholar 

  11. Findlay M, Young H, Cunningham D, Iveson A, Cronin B, Hickish T, Pratt B, Husband J, Flower M, Ott R: Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 14: 700–708, 1996

    Google Scholar 

  12. Stroobants S, Goeminne J, Seegers M, Martens M, van den Borne B, Spaepen K, Sciot R, Dumez H, Mortelmans L, van Oosterom A: Early evaluation of tumor response to STI571 with FDG-PET in patients with soft tissue sarcomas (STS). Eur J Cancer 37: S33, 2001 (Abstract 112)

    Google Scholar 

  13. Blanke CD, von Mehren M, Joensuu H, Roberts PJ, Eisenberg B, Heinrich M, Druker B, Tuveson D, Dimitrijevic S, Silberman SL, Demetri GD: Evaluation of the safety and efficacy of an oral molecularly-targeted therapy, STI571, in patients (pts) with unresectable or metastatic gastrointestinal stromal tumors (GISTS) expressing C-KIT (CD117). Proc Am Soc Clin Oncol 20: 1a, 2001 (Abstract 1)

    Google Scholar 

  14. Hammond L, Denis L, Salman U, Chintapalli K, Hidalgo M, Jerabeck P, Patnaik A, Allen L, Ferrante K, Carter W, Kuhn J, Drengler R, Silberman S, Rowinsky E: 18FDG-PET evaluation of patients treated with the epidermal growth factor (EGFR) tyrosine kinase (TK) inhibitor, CP-358,774. Clin Cancer Res 6: 4543S, 2000 (Abstract 385)

    Google Scholar 

  15. Boerner AR, Weckesser E, Weckesser M, Hofmann M, Petrich T, Boy C, Langen KJ, Knapp WH: Monitoring isotretinoin therapy in metastatic or recurrent thyroid cancer with F-18–FDG PET. Eur J Nucl Med 8: 962, 2001 (Abstract OS5)

    Google Scholar 

  16. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T: Intratumoral distribution of fluorine-18–fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microradiography. J Nucl Med 33: 1972–1980, 1992

    Google Scholar 

  17. Lewis P, Salama A: Uptake of fluorine-18–deoxyglucose in sarcoidosis. J Nucl Med 35: 1647–1649, 1995

    Google Scholar 

  18. Miyauchi T, Brown RS, Grossman HB, Wojno K, Wahl RL: Correlation between visualization of primary renal cancer by FDG-PET and histopathological findings. J Nucl Med 37: 64P, 1996 (Abstract 245)

  19. Rozenthal J, Levine R, Nickles R, Dobkin J: Glucose uptake by gliomas after treatment. Arch Neurol 46: 1302–1307, 1989

    Google Scholar 

  20. Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H, Romahn J, van Kaick G: PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 32: 1485–1490, 1991

    Google Scholar 

  21. DiChiro G, Brooks R: PET-FDG of untreated and treated cerebral gliomas. J Nucl Med 29: 421–422, 1988

    Google Scholar 

  22. Janus TJ, Kim EE, Tilbury R, Bruner JM, Yung WK: Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 33: 540–548, 1993

    Google Scholar 

  23. Davis WK, Boyko OB, Hoffman JM, Hanson MW, Schold SC, Burger PC, Friedman AH, Coleman RE: [18F]2–fluoro-2–deoxyglucose-positron emission tomography correlation of gadolinium-enhanced MR imaging of central nervous system neoplasia. AJNR 14: 515–523, 1993

    Google Scholar 

  24. Ishiwata K, Vaalburg W, Elsinga P, Paans AMJ, Woldring M: Metabolic studies with L-[1–14C]tyrosine for the investigation of a kinetic model to measure protein synthesis rates with PET. J Nucl Med 27: 524–529, 1988

    Google Scholar 

  25. Wienhard K, Herholz K, Coenen H, Rudolf J, Kling P, Stocklin G, Heiss W: Increased amino acid transport into brain tumors measured by PET of L-2–[18F] fluorotyrosine. J Nucl Med 32: 1338–1346, 1991

    Google Scholar 

  26. Ishiwata K, Kubota K, Murakami M, Kubota R, Sasaki T, Ishii S, Senda M: Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo. J Nucl Med 34: 1936–1943, 1993

    Google Scholar 

  27. Kubota K, Matsuzawa T, Fujiwara T, Sato T, Tada M, Ido T, Ishiwata K: Differential diagnosis of AH109A tumor and inflammation by radioscintigraphy with L-[methyl]-11C]-methionine. Jpn J Cancer Res 80: 778–782, 1989

    Google Scholar 

  28. Sato T, Fujiwara T, Abe Y, Itoh M, Fukuda H, Hatazawa J, Kubota K, Ito T, Matsuzawa T: Double tracer whole-body autoradiography using a short-lived positron emitter and a long-lived beta emitter. Radioisotopes 38: 7–12, 1989

    Google Scholar 

  29. Kubota K, Yamada S, Ishiwata K, Ito M, Fujiwara T, Fukuda H, Tada M, Ido T: Evaluation of the treatment response of lung cancer with positron emission tomography and L-[methyl]-11C] methionine: a preliminary study. Eur J Nucl Med Mol Imaging 20: 495–501, 1993

    Google Scholar 

  30. Kubota K, Matsuzawa T, Ito M, Ito K, Fujiwara T, Abe Y, Yoshioka S, Fukuda H, Hatazawa J, Iwata R, Watanuki S, Ido T: Lung tumor imaging by positron emission tomography using C-11 L-methionine. J Nucl Med 26: 37–42, 1985

    Google Scholar 

  31. Jacobs M, Mantil J, Satter M, Hwang D, Ezzeddine B, Bernstein T, Kraus G: Concurrent FDG and methionine study of brain tumors. J Nucl Med 38: 250P, 1997 (Abstract 1057)

  32. Bergstrom M, Muhr C, Lundberg P, Langstrom B: PET is a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 32: 610–615, 1991

    Google Scholar 

  33. Macapinlac H, Humm J, Larson S, Akhurst T, Squire O, Pentlow K, Yeung H, Finn R, Cai S, Osman I, Scher H: Differential metabolism and pharmacokinetics of C-11 methionine (C-11MET) and FDG in metastatic prostate cancer. J Nucl Med 39: 67P, 1998 (Abstract 258)

  34. Ishiwata K, Vaalburg W, Elsinga P, Paans AMJ, Woldring M: Comparison of L-[11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med 29: 1419–1427, 1988

    Google Scholar 

  35. Storch K, Wagner D, Burke J, Young V: Quantitative study in vivo of methionine cycle in humans using [methyl]-2H3]-and [I-13C]methionine. Am J Physiol 255: E322–E331, 1988

    Google Scholar 

  36. Phelps M, Barrio J, Huang S, Keen R, Chugani H, Mazziotta J: Criteria for the tracer kinetic measurement of cerebral protein synthesis in humans in positron emission tomography. Ann Neurol 15: S192–S202, 1984

    Google Scholar 

  37. Kole A, Pruim J, Nieweg O, Van Ginkel R, Hoekstra H, Koops H, Vaalburg W: PET with L-[1–carbon-11]-tyrosine to visualize tumors and measure protein synthesis rates. J Nucl Med 38: 191–195, 1996

    Google Scholar 

  38. Williamsen AT, van Waarde A, Paans AM, Pruim J, Luurtsema G, Go KG, Vaalburg W: In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1–11C]tyrosine and PET. J Nucl Med 36: 411–419, 1995

    Google Scholar 

  39. Wester H, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G: Synthesis and radiopharmacology of O-(2–[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40: 205–212, 1999

    Google Scholar 

  40. Vander Borght T, Pauwels S, Lambotte L, Beckers C: Rapid synthesis of 2C-radiolabelled thymidine (2C-dThd), a potential tracer for measurement of liver regeneration. J Nucl Med 30: 929P, 1989 (Abstract 850)

  41. Goldspink DF, Goldberg AL: Problems in the use of [Me[H-3]]thymidine for the measurement of DNA synthesis. Biochim Biophys Acta 299: 521–532, 1973

    Google Scholar 

  42. Mankoff D, Sheilds A, Graham M, Link J, Eary J, Krohn K: Kinetic analysis of 2–[C-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39: 1043–1055, 1998

    Google Scholar 

  43. Shields A, Mankoff D, Graham M, Zheng M, Kozawa SM, Link J, Krohn KA: Analysis of 2–[carbon-11]thymidine blood metabolites in PET imaging. J Nucl Med 37: 290–296, 1996

    Google Scholar 

  44. Link JM, Grierson J, Krohn K: Alternatives in the synthesis of 2–[C-11]thymidine. J Labeled Compd Radiopharm 37: 611–612, 1995

    Google Scholar 

  45. Brooks D, Lammertsma A, Beaney R, Leenders K, Buckingham P, Marshall J, Jones T: Measurement of regional cerebral pH in human subjects using continuous inhalation of [C-11]CO2 and positron emission tomography. J Cereb Blood Flow Metab 4: 458–465, 1984

    Google Scholar 

  46. Buxton R, Wechsler L, Alpert N, Ackerman R, Elmaleh D, Correia J: Measurement of brain pH using [C-11]CO2 and positron emission tomography. J Cereb Blood Flow Metab 4: 8–16, 1984

    Google Scholar 

  47. Eary J, Mankoff D, Spence A, Berger M, Olshen A, Link J, O'Sullivan F, Krohn K: 2–[C-11]Thymidine imaging of malignant brain tumors. Cancer Res 59: 615–621, 1999

    Google Scholar 

  48. Price P, Newell D, Connors T, Harte R, Wells P, Brock C, Matthews J, Brady F, Luthra S, Osman S, Brown G, Steel C, Jones T: The potential of tracer kinetic studies in drug development programs: a new investigational area of cancer research. Ann Oncol 7: 24S, 1996 (Abstract 048)

    Google Scholar 

  49. Shields A, Grierson J, Kohmen B, Machulla H, Stayanoff J, Crews L, Obradovich J, Mucik O, Mangner T: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4: 1334–1336, 1998

    Google Scholar 

  50. Shields A, Grierson J: F-18 FLT can be used to image cell proliferation in vivo. J Nucl Med 38: 249P, 1997 (Abstract 1055)

  51. Seitz U, Wagner M, Vogg A, Glatting G, Neumaier B, Greten F, Schmid R, Reske S: In vivo evaluation of 5[18F]Fluoro-d′-deoxyuridine as tracer for positron emission tomography in a murine pancreatic cancer model. Cancer Res 61: 3853–3857, 2001

    Google Scholar 

  52. Conti P, Alauddin M, Fissekis J, Bading J: Synthesis of F-18–labeled 5–fluoro-2′-deoxy-2′-fluoro-1–β-arabinofuranosyluracil ([F-18]FFAU) for PET imaging studies. J Nucl Med 38: 177P, 1997 (Abstract 762)

  53. Jeong J, Yang D, Chang Y, Lee Y, Kim C, Kim Y, Lee D, Chung J, Lee M, Koh C: Efficient radiosynthesis and biodistribution of 2′-deoxyarabino-2′-F-18–fluoro-3′,5′,6–triacetyladenine in tumor-bearing rodents: a prodrug of fluoroadenosine for PET assessment of proliferation. J Nucl Med 38: 177P, 1997 (Abstract 763)

  54. Tjuvajev J, Joshi R, Balatoni J, Finn R, Larson S, Blasberg R: In vitro assessment of novel 2′-3′-, and 5–fluoro, and 5–iodo substituted radiolabeled pyrimidine analogs of thymidine for imaging tumor proliferative activity. J Nucl Med 39: 237P, 1998 (Abstract 1047)

  55. Macara IG: Elevated phosphocholine concentrate in RAS-transformed NIH3T3 cells arises from increased choline kinase activity not from phosphatidylcholine breakdown. Mol Cell Biol 9: 325–328, 1989

    Google Scholar 

  56. Hara T, Kosaka N, Kondo T, Kishi O, Kobori O: Imaging of brain tumor, lung cancer, esophagus cancer, colon cancer, prostate cancer, and bladder cancer with [C-11]choline. J Nucl Med 38: 250P, 1997 (Abstract 1058)

  57. Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JWG, Willemsen ATM, Vaalburg W, Groen HJM: Comparison of 11C-choline and 18F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43: 167–172, 2002

    Google Scholar 

  58. Kishi H, Hirano Y, Kosaka N, Hara T: Clinical utility of 18F-fluoroethylcholine in prostate cancer imaging. J Nucl Med 42: 120p, 2001 (Abstract 447)

  59. DeGrado T, Coleman R, Wang S, Baldwin S, Orr M, Robertson C, Polascik T, Price D: Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61: 110–117, 2000

    Google Scholar 

  60. Molloy C, Bottaro D, Fleming T, Marshall M, Gibbs J, Aaronson S: PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature 342: 711–714, 1989

    Google Scholar 

  61. Galetic I, Andjelkovic M, Meier R, Brodbeck D, Park J, Hemmings B: Mechanism of protein kinase β activation by insulin/insulin-like growth factor-1 revealed by specific inhibitors of phosphoinositide 3–kinase-significance for diabetes and cancer. Pharmacol Ther 82: 409–425, 1999

    Google Scholar 

  62. Cuadrado A, Issing W, Fleming T, Molloy C: Uneven distribution of protein kinase C-α and-β isozymes in human sarcomas and carcinomas. J Cell Physiol 159: 434–440, 1994

    Google Scholar 

  63. Tewson T, Krohn K: PET radiopharmaceuticals: state-of-the-art and future prospects. Semin Nucl Med 28: 221–234, 1998

    Google Scholar 

  64. Fowler JS, Volkow ND, Wang GJ, Ding YS, Dewey SL: PET and drug research and development. J Nucl Med 40: 1154–1163, 1999

    Google Scholar 

  65. Brix G, Bellemann M, Haberkorn U, Gerlach L, Lorenz W: Assessment of the biodistribution and metabolism of 5–fluorouracil as monitored by 18F PET and 19F MRI: a comparative animal study. Nucl Med Biol 23: 897–906, 1996

    Google Scholar 

  66. Kissel J, Brix G, Bellemann M, Strauss L, Dimitrakopoulou-Strauss A, Port R, Haberkorn U, Lorenz W: Pharmacokinetic analysis of 5–[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 57: 3415–3423, 1997

    Google Scholar 

  67. Bading J, Alauddin M, Fissekis J, Spector T, Conti P: Blocking catabolism enhances PET studies of 5–[F-18]fluorouracil pharmacokinetics. J Nucl Med 38: 176P, 1997 (Abstract 757)

  68. Aboagye E, Saleem A, Cunningham V, Osman S, Price P: Extraction of 5–fluorouracil by tumor and liver: a noninvasive positron emission tomography study of patients with gastrointestinal cancer. Cancer Res 61: 4937–4941, 2001

    Google Scholar 

  69. Osman S, Luthra S, Brady F, Hume S, Brown G, Harte R, Matthews J, Denny W, Baguley B, Jones T, Price P: Studies on the metabolism of the novel antitumor agent [N-methyl-11C]N-[2–(dimethylamino)ethyl]acridine-4–carboxamide in rats and humans prior to phase I clinical trials. Cancer Res 57: 2172–2180, 1997

    Google Scholar 

  70. Brock C, Matthews J, Brown G, Osman S, Evans H, Newlands E, Price P: Response to temozolomide (TEM) in recurrent high-grade gliomas (HGG) is related to tumor drug concentration. Ann Oncol 9: S174, 1998 (Abstract 667)

    Google Scholar 

  71. DeBono J, Denis L, Patnaik A, Hammond L, Geyer C, Gerson S, Cutler D, Reydeman L, Rowinsky E, Tolcher A: Extended temozolomide (TMZ) dosing schedules permit the administration of higher TMZ intensities and inhibits the DNA repair enzyme O6-alkylguanyl transferase (AGAT). Eur J Cancer 37: S31, 2001 (Abstract 105)

    Google Scholar 

  72. Diksic M, Sako K, Feindel W, Kato A, Yamamoto L, Farrokhzad S, Thompson C: Pharmacokinetics of positron-labeled 1,3–bis(2–chloroethyl)nitrosourea in human brain tumors using positron emission tomography. Cancer Res 44: 3120–3124, 1984

    Google Scholar 

  73. Katzenellenbogen JA, Heiman DF, Carlson KE, Lloyd JE: In vivo and in vitro steroid receptor assays in the design of estrogen radiopharmaceuticals. In: Eckelman WC (ed) Receptor-binding Radiotracers, Vol I. CRC Press, Boca Raton, Florida, 1982, pp 93–126

    Google Scholar 

  74. Van de Wiele C, Van Belle S, Sleghers G, Dierckx R: Receptor imaging in breast carcinoma: future prospects. Eur J Nucl Med 28: 675–679, 2001

    Google Scholar 

  75. Muhr C, Bergstrom M, Lundberg P, Bergstrom K, Hartvig P, Lundqvist H, Antoni G, Langstrom B: Dopamine receptors in pituitary adenomas: PET visualization with C-11–N-methyl-spiperone. J Comput Assist Tomogr 10: 175–180, 1986

    Google Scholar 

  76. Slifstein M, Mawlawi O, Martinez D, Chatterjee A, Broft A, Laruelle M: Partial volume effect in the ventral striatum: implications for 11C-raclopride binding. J Nucl Med 42: 184P, 2001 (Abstract 797)

  77. Kurbel S, Kurbel B, Kovac D, Sulava D, Krajina Z, Dmitrovo B, Sokcevi M: Endothelin-secreting tumors and the idea of pseudoectopic hormone section in tumors. Med Hypotheses 52: 329–333, 1999

    Google Scholar 

  78. Alanen K, Deng D, Chakrabarti S: Augmented expression of endothelin-1, endothelin-3 and the endothelin-β receptor in breast carcinoma. Histopathology 36: 161–167, 2000

    Google Scholar 

  79. Bagnato A, Salani D, Di Castro V, Wu-Wong JR, Tecce R, Nicotra MR, Venuti A, Natali PG: Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res 59: 720–727, 1999

    Google Scholar 

  80. Ahmed S, Thompson J, Coulson J, Woll P: Studies in the expression of endothelin, its receptor subtypes, and converting enzymes in lung cancer and in human bronchial epithelium. Am J Respir Cell Mol Biol 22: 422–431, 2000

    Google Scholar 

  81. Johnstrom P, Aigbirhio F, Clark J, Downey S, Pickard J, Davenport A: Synthesis of the first endothelin-A and-B-selective radioligands for positron emission tomography. J Cardiovasc Pharmacol 36: S58–S60, 2000

    Google Scholar 

  82. Aleksic S, Szabo Z, Scheffel U, Ravert H, Mathews W, Kerenyi L, Rauseo P, Gibson R, Burns D, Dannals R: In vivo labeling of endothelin receptors with [11C]L-753,037: studies in mice and dog. J Nucl Med 42: 1274–1280, 2001

    Google Scholar 

  83. Bonasera T, Ortu G, Rozen Y, Krais R, Freedman N, Chisin R, Gazit A, Levitzki A, Mishani E: Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Bio 28: 359–374, 2001

    Google Scholar 

  84. Smaill J, Rewcastle G, Loo J, Greis K, Chan O, Reyner E, Lipka E, Showalter H, Vincent P, Elliott W, Denny W: Tyrosine kinase inhibitors, 17, irreversible inhibitors of the epidermal growth factor receptor: 4–(phenylamino) quinazoline-and 4–(phenylamino)pyrido[3,2–d]pyrimidine-6–acrylamides bearing additional solubilizing functions. J Med Chem 43: 1380–1397, 2000

    Google Scholar 

  85. Smaill J, Palmer B, Rewcastle G, Denny W, McNamara D, Dobrusin E, Bridges A, Zhou H, Showalter H, Winters R, Leopold W, Fry D, Nelson J, Slintak V, Elliot W, Roberts B, Vincent P, Patmore S: Tyrosine kinase inhibitors, 15, 4–(phenylamino)quinazoline and 4–(phenylamino)pyrido[d] pyrimidine acrylamides as irreversible inhibitors of the ATP binding site of the epidermal growth factor receptor. J Med Chem 42: 1803–1815, 1999

    Google Scholar 

  86. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AA, Katzenellenbogen JA: Breast cancer: PET imaging of estrogen receptors. Radiology 169: 45–48, 1988

    Google Scholar 

  87. Dehdashti F, Flanagan F, Mortimer J, Katzenellenbogen J, Welch M, Siegel B: Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med Mol Imaging 26: 51–56, 1999

    Google Scholar 

  88. Inoue T, Kim E, Wallace S, Yang D, Wong F, Bassa P, Cherif A, Delpassand E, Buzdar A, Podoloff D: Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Bio Radiopharm 11: 235–245, 1996

    Google Scholar 

  89. Dehdashti F, McGuire AH, van Brocklin HF, Siegel BA, Andriole DP, Griffeth LK, Pomper MG, Katzenellenbogen JA, Welch MJ: Assessment of 21–[18F]Fluoro-16α-ethyl-19–norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinoma. J Nucl Med 32: 1532–1537, 1991

    Google Scholar 

  90. Vilner B, John C, Bowen W: Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55: 408–413, 1995

    Google Scholar 

  91. Mach R, Smith C, Al-Nabulsi I, Whirrett B, Childers S, Wheeler K: Sigma-2 receptors as potential biomarkers of proliferation in breast cancer. Cancer Res 57: 156–161, 1997

    Google Scholar 

  92. Wheeler K, Wang L, Wallen C, Childers S, Cline J, Keng P, Mach R: Sigma-2 receptors as a biomarker of proliferation in solid tumors. Br J Cancer 82: 1223–1232, 2000

    Google Scholar 

  93. Mach R, Huang Y, Buckheimer N, Kuhner R, Wu L, Morton T, Wang L, Ehrenkaufer R, Wheeler K: [F18]N-4′-fluorobenzyl-4–(3–bromophenyl) acetamide for imaging the receptor status of tumors. J Labelled Comp Radiopharm 42: S258–260, 1999

    Google Scholar 

  94. Bem W, Thomas G, Mamone J, Homan S, Levy B, Johnson F, Coscia C: Overexpression of receptors in nonneural human tumors. Cancer Res 51: 6558–6562, 1991

    Google Scholar 

  95. Wilson C, Lammertsma A, McKenzie C, Sikora K, Jones T: Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52: 1592–1597, 1992

    Google Scholar 

  96. Inaba T: Quantitative measurements of prostatic blood flow and blood volume by positron emission tomography. J Urol 148: 1457–1460, 1992

    Google Scholar 

  97. Flower M, Zweit J, Hall A, Burke D, Davies M, Dworkin M, Young H, Mundy J, Ott R, McCready R, Carnochan P, Allen-Mersh T: 62Cu-PTSM and PET used for the assessment of angiotensin II-induced blood flow changes in patients with colorectal liver metastases. Eur J Nucl Med 28: 99–102, 2001

    Google Scholar 

  98. Antich P, Ranney D, Kulkarni P, Constantinescu A, Arbique G, Fernanco J, Mason R, Tsyganov E, Oz O, McColl R, Slavine N, Parkey R: Positron imaging of tumor angiogenesis using the tumor biomarker, 68Ga:deferoxamine-dermatan sulfate [68Ga:DF-DS]. Proc Soc Nucl Imaging Drug Development, 2000 (Abstract P-8)

  99. Friedlander M, Brooks P, Shaffer R, Kincaid C, Varner J, Cheresh D: Definition of two antiangiogenic pathways by distinct α v integrins. Science 270: 1500–1502, 1995

    Google Scholar 

  100. Eliceiri B, Cheresh D: The role of α v integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103: 1227–1230, 1999

    Google Scholar 

  101. Felding-Haberman B, Mueller B, Romerdahl C, Cheresh D: Involvement of integrin α v gene expression in human melanoma tumorigenicity. J Clin Invest 89: 2018–2022, 1992

    Google Scholar 

  102. Stromblad S, Cheresh D: Integrins, angiogenesis and vascular cell survival. Chem Biol 3: 881–885, 1996

    Google Scholar 

  103. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA: Vascular integrin α v β 3 a new prognostic indicator in breast cancer. Clin Cancer Res 4: 2625–2634, 1998

    Google Scholar 

  104. Brooks P, Montgomery A, Rosenfeld M, Reisfeld R, Hu T, Klier G, Cheresh D: Integrin α v β 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164, 1994

    Google Scholar 

  105. Brooks P, Clark R, Cheresh D: Requirement of vascular integrin α v β 3 for angiogenesis. Science 264: 569–571, 1994

    Google Scholar 

  106. Brooks P, Stromblad S, Klemke R, Visscher D, Sarkar F, Cheresh D: Antiintegrin α v β 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96: 1815–1822, 1995

    Google Scholar 

  107. Haubner R, Wester H, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman S, Kessler H, Schwaiger M: Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42: 326–336, 2001

    Google Scholar 

  108. Haubner R, Wester H, Weber W, Mang C, Ziegler S, Goodman S, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M: Non-invasive imaging of α v β 3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61: 1781–1785, 2001

    Google Scholar 

  109. Herbst R, Hess N, Mulliani N, Charnsangavej C, Baker C, Ellis L, Kim E, Bucana C, Pluda J, Fidler I, Abbruzzese J: A phase I clinical trial of recombinant human endostatin (rHE) in patients (PTS) with solid tumors: surrogate analyses to determine a biologically effective dose (BED). Clin Cancer Res 6: 4582S, 2000 (Abstract 578)

    Google Scholar 

  110. van Triest B, Pinedo HM, Blaauwgeers JLG, van Diest PJ, Schoenmakers PS, Voorn DA, Smid K, Hoekman K, Hoitsma HFW, Peters GJ: Prognostic role of thymidylate synthase, thymidine phosphorylase/platelet-derived endothelial cell growth factor, and proliferation markers in colorectal cancer. Clin Cancer Res 6: 1063–1072, 2000

    Google Scholar 

  111. Klecker R, Collins J: Thymidine phosphorylase as a target for imaging and therapy with thymine analogs. Cancer Chemother Pharmacol 48: 407–412, 2001

    Google Scholar 

  112. Schuller J, Cassidy J, Dumont E, Roos, Durston S, Banken L, Utoh M, Mori K, Weidekamm E, Reigner B: Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol 45: 291–297, 2000

    Google Scholar 

  113. Shiue C, Shiue G, Alavi A, Jones S, Zasloff M: Synthesis of 18F-fluoropropylsqualamine as angiogenesis imaging agent. J Nucl Med 42: 256P, 2001 (Abstract 1077)

  114. Aboagye EO: Molecular imaging paradigms and cancer therapy. Eur J Cancer 37: S241, 2001 (Abstract 891)

    Google Scholar 

  115. Anderson H, Jap J, Price P: Measurement of tumor and normal tissue (NT) perfusion by positron emission tomography (PET) in the evaluation of antivascular therapy: results in the phase I study of combrestatin A4 phosphate (CA4P). Proc of ASCO 19: 179a, 2000 (Abstract 695)

    Google Scholar 

  116. Kraut EH, Bender J, Clinton S, Jensen R, Balcerzak S, Chan K, Mueller C, Vaswani K, Mantil J, Christian B, Grever M: Phase I study of SU5416 in combination with CPT-11 and cisplatin in patients with solid tumours. Clin Cancer Res 7: S3661, 2001 (Abstract 39)

    Google Scholar 

  117. Larson S, Tjuvajev J, Blasberg R: Triumph over mischance: a role for nuclear medicine in gene therapy. J Nucl Med 38: 1230–1233, 1997

    Google Scholar 

  118. Tjuvajev J, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg R: Imaging the expression of transfected genes in vivo. Cancer Res 55: 6126–6132, 1995

    Google Scholar 

  119. Tjuvajev J, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, Beattie B, Koutcher J, Larson S, Blasberg R: Noninvasive imaging of herpes virus thymidine kinsae gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56: 4087–4095, 1996

    Google Scholar 

  120. Tjuvajev J, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, Safer M, Beattie B, DiResta G, Daghighian F, Augensen F, Koutcher J, Zweit J, Humm J, Larson S, Finn R, Blasberg R: Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58: 4333–4341, 1998

    Google Scholar 

  121. Jacobs A, Tjuvajev J, Dubrovin M, Akhurst T, Balatoni J, Beattie B, Joshi R, Finn R, Larson S, Herrlinger U, Pechan P, Chiocca A, Breakfield X, Blasberg R: Positron emission tomography-based imaging transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 61: 2983–2995, 2001

    Google Scholar 

  122. Haberkorn U, Altmann A, Morr I, Germann C, Oberdorfer F, van Kaick G: Multitracer studies during gene therapy of hepatoma cells with herpes simplex virus thymidine kinase and ganciclovir. J Nucl Med 38: 1048–1054, 1997

    Google Scholar 

  123. Earnshaw DL, Bacon TH, Darlison SJ, Edmonds K, Perkins RM, Vere Hodge A: Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type I (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob Agents Chemother 36: 2747–2757, 1992

    Google Scholar 

  124. Gambhir S, Barrio J, Bauer E, Iyer M, Namavari M, Satyamurthy N, Shah P, Toyokuni T, Wu L, Berk A, Phelps M, Herschman H: Radiolabeled penciclovir: a new reporter probe with improved imaging properties over ganciclovir for imaging herpes-simplex virus type I thymidine kinase reporter gene expression. J Nucl Med 39: 53P, 1998 (Abstract 203)

  125. Yaghoubi S, Barrio J, Dahlbom M, Iyer M, Namavari M, Satyamurthy N, Goldman R, Herschman H, Phelps M, Gambhir S: Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 42: 1225–1234, 2001

    Google Scholar 

  126. Jacobs A, Voges J, Reszka R, Lercher M, Gossman A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD: Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358: 727–729, 2001

    Google Scholar 

  127. Pan D, Gambhir S, Phelps M, Barrio J: Synthesis of fluorinated nucleosides for antisense oligonucleotide imaging with PET. J Nucl Med 38: 134P, 1997 (Abstract 502)

  128. Tavitian B, Marzabal S, Kuhnast B, Dolle F, Terrazzino S, Deverre J, Jobert A, Hinnen F, Bendriem B, Crouzel C, Di Giamberardino L: In vivo imaging of oligonucleotides with positron emission tomography. J Nucl Med 39: 229P, 1998 (Abstract 1011)

  129. Uhlmann E, Peyman A: Oligonucleotide analogs containing diphospho-internucleoside linkages. Methods Mol Bio 20: 355–389, 1993

    Google Scholar 

  130. Ahao Q, Matson S, Herrera C, Fisher E, Yu H, Krieg A: Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphothiorate and methylphosphorate oligonucleotides. Antisense Res Dev 3: 53–66, 1993

    Google Scholar 

  131. Agrawal S, Temsamani J, Gailbraith W, Tang J: Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 28: 7–16, 1995

    Google Scholar 

  132. Galbraith W, Hobson W, Giclas P, Agrawal S: Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res Dev 4: 201–206, 1994

    Google Scholar 

  133. Moulder J, Rockwell S: Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys 10: 695–712, 1984

    Google Scholar 

  134. Adams G: Hypoxia-mediated drugs for radiation and chemotherapy. Cancer 48: 696–707, 1981

    Google Scholar 

  135. Hockel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, Knapstein PG, Vaupel P: Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26: 45–50, 1993

    Google Scholar 

  136. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW: Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56: 941–943, 1996

    Google Scholar 

  137. Hustinx R, Eck S, Alavi A: Potential applications of PET imaging in developing novel cancer therapies. J Nucl Med 40: 995–1002, 1999

    Google Scholar 

  138. Rasey JS, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA: Radiolabeled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 17: 985–991, 1989

    Google Scholar 

  139. Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE: Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol 46: 229–237, 1998

    Google Scholar 

  140. Rasey JS, Casciari JJ, Hofstrand PD, Muzi M, Graham MM, Chin L: Determining hypoxic fraction in a rat glioma by uptake of radiolabeled fluoromisonidazole. Radiat Res 153: 84–92, 2000

    Google Scholar 

  141. Koh WJ, Bergman KS, Rasey JS, Peterson LM, Evans ML, Graham M, Grierson JR, Lindsley KL, Lewellen TK, Krohn KA: Evaluation of oxygenation status during fractionated radiotherapy in human non-small cell lung cancers using [18F]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33: 391–398, 1995

    Google Scholar 

  142. Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham M, Krohn KA: Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36: 417–428, 1996

    Google Scholar 

  143. Hustinx R, Evans SM, Kachur AV, Shiue CY, Jenkins WJ, Shiue GG, Karp JS, Lord EM, Dolbier WR, Alavi A, Koch CJ: Non-invasive assessment of tumor hypoxia with the 2–Nitroimidazole 18F-EF1 and PET. J Nucl Med 4: 99P, 1999 (Abstract 401)

  144. Bentzen L, Keiding S, Horsman MR, Falborg L, Hansen SB, Overgaard J: Feasibility of detecting hypoxia in experimental mouse tumors with 18F-fluorinated tracers and positron emission tomography: a study evaluating [18F]Fluoromisonidazole and [18D]Fluoro-2–deoxy-D-glucose. Acta Oncol 39: 629–637, 2000

    Google Scholar 

  145. Rischin D, Hicks R, Peters L, Hughes P, Binns D, Maisano R, Harvey E, von Roemeling R: PET evaluation of hypoxia and response in locally advanced head and neck cancer treated on a phase I trial of radiotherapy, tirapazamine, and cisplatin. Ann Oncol 9: S126, 1998 (Abstract 485)

    Google Scholar 

  146. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Yokoyama A: Copper-62–ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38: 1155–1160, 1997

    Google Scholar 

  147. Takahashi N, Fujibayashi Y, Yonekura Y, Welch M, Waki A, Tsuchida T, Sadato N, Sugimoto K, Itoh H: Evaluation of 62Cu labeled diacetyl-bis(N4–methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med 14: 323–328, 2000

    Google Scholar 

  148. Fujibayashi Y, Yoshimi E, Waki A, Takahashi N, Yonekura Y: Cu-ATSM, a new tumor agent predicting ability for bioreductive drug activation. J Nucl Med 39: 90P, 1998 (Abstract 351)

  149. Lewis J, McCarthy D, McCarthy T, Fujibayashi Y, Welch M: Evaluation of Cu-64–ATSM in vitro and in vivo in a hypoxic model. J Nucl Med 40: 177–183, 1999

    Google Scholar 

  150. Chao KS, Bosch WR, Mutic S, Lewis JS, Dehdashti F, Mintun MA, Dempsey JF, Perez CA, Purdy JA, Welch MJ: A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49: 1171–1182, 2001

    Google Scholar 

  151. Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA: Development of 18F-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194: 795–800, 1995

    Google Scholar 

  152. Gronroos T, Eskola O, Lehtio K, Minn H, Marjamaki Patients, Bergman J, Haaparanta M, Forsback S, Solin O: Pharmacokinetics of [18F]FETNIM: a potential hypoxia marker for PET. J Nucl Med 42: 1397–1404, 2001

    Google Scholar 

  153. Lehtio K, Oikonen V, Gronroos T, Eskola O, Kalliokoski K, Bergman J, Solin O, Grenman R, Nuutila P, Minn H: Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with [15O]H2O and [18F]Fluoroerythronitroimidazole PET. J Nucl Med 42: 1643–1652, 2001

    Google Scholar 

  154. Grillenberger K, Luckau D, Guhlmann A, Mobus V, Knapp F, Reske S: Synthesis of N-13–cisplatin (cis-diamminodichloro-platinum) in a fully automated chemistry module. J Nucl Med 38: 113P, 1997 (Abstract 419)

  155. Levchenko A, Mehta BM, Lee JB, Humm JL, Augensen F, Squire O, Kothari PJ, Finn RD, Leonard EF, Larson SM: Evaluation of 11C-colchicine for PET imaging of multiple drug resistance. J Nucl Med 41: 493–501, 2000

    Google Scholar 

  156. Hendrikse N, de Vries E, Schinkel A, Fluks E, van der Graaf W, Vaalburg W, Franssen E: P-glycoprotein mediated pharmacokinetics of radiopharmaceuticals analyzed by positron emission tomography in vivo. J Nucl Med 38: 385P, 1997 (Abstract 2578)

  157. Hendrikse N, de Vries E, Eriks E, van der Graaf W, Hospers G, Willemsen A, Vaalburg W, Franssen E: P-glycoprotein pharmacokinetics and its reversal of [C-11]labeled drugs in tumor bearing rats. J Nucl Med 39: 130P, 1998 (Abstract 512)

  158. Hendrikse N, Bart J, de Vries E, Groen H, van der Graaf W, Vaalburg W: P-glycoprotein at the blood-brain barrier and analysis of drug transport with positron-emission tomography. J Clin Pharmacol 41: 48S-54S, 2001

    Google Scholar 

  159. Gibson RE, Eng WS, Fioravanti C, Francis B, Hamill T, Burns HD: A radiotracer for imaging farnesyl transferase distribution and enzyme occupancy. J Nucl Med: 99P, 1999 (Abstract 400)

  160. Szabo Z, Ravert HT, Mathews WB, Musachio JL, Gibson R, Fioravanti C, Hamill T, Eng WS, Dannals RF, Burns HD: Kinetic modeling of a farnesyl transferase specific PET radiotracer. J Nucl Med 40: 228P, 1999 (Abstract 1014)

  161. Bakir MA, Babich JW, Styles JM, Dean CJ, Eccles SA, Lambrecht RM: Iodine-124–labeled-ICR12, a new monoclonal antibody for imaging proto-oncogene expression in breast cancer using PET: optimization of labeling efficiency and immunoreactivity. J Nucl Med 31: 777P, 1990 (Abstract 291)

  162. Wilson C, Snook D, Dhokia B, Taylor C, Watson I, Lammertsma A, Lambrecht R, Waxman J, Jones T, Epenetos A: Quantitative measurement of monoclonal antibody distribution and blood flow using positron emission tomography and 124Iodine in patients with breast cancer. Int J Cancer 47: 344–347, 1991

    Google Scholar 

  163. Greven KM, Williams DW III, Keyes JW Jr, McGuirt WF, Watson NE Jr, Randall ME, Geisinger KR, Cappellari JO: Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 74: 1355–1359, 1994

    Google Scholar 

  164. Rege SD, Chaiken L, Hoh CK, Choi Y, Lufkin R, Anzai Y, Juillard G, Maddahi J, Phelps ME, Hawkins RA: Change induced by radiation therapy in FDG uptake in normal and malignant structures of the head and neck: quantitation with PET. Radiology 189: 807–812, 1993

    Google Scholar 

  165. Wahl RL: Clinical oncology update: the emerging role of positron emission tomography: part II. In: Cancer Principle and Practice of Oncology, Vol 11. Lippincott-Raven Publ, Philadelphia, 1997, pp 1–24

    Google Scholar 

  166. Dimitrakopoulou-Strauss A, Strauss L, Schlag P, Hohenberger P, Mohler M, Oberdorfer F, van Kaick G: Fluorine-18–fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 39: 1197–1202, 1998

    Google Scholar 

  167. Dimitrakopoulou A, Strauss L, Clorius J, Ostertag H, Schlag P, Heim M, Oberdorfer F, Helus F, Haberkorn U, van Kaick G: Studies with positron emission tomography after systemic administration of fluorine-18–uracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 34: 1075–1081, 1993

    Google Scholar 

  168. Dimitrakopoulou-Strauss A, Strauss L, Schlag P, Hohenberger P, Irngartinger G, Oberdorfer F, Doll J, van Kaick G: Intravenous and intra-arterial O-15–labeled water and fluorine-18–labeled fluorouracil in patients with metastatic colorectal carcinoma. J Nucl Med 39: 465–473, 1998

    Google Scholar 

  169. Patlak CS, Blasberg RG: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Nucl Cereb Blood Flow Metabol 5: 584–590, 1985

    Google Scholar 

  170. Haberkorn U, Bellemann ME, Altmann A, Gerlach L, Morr I, Oberdorfer F, Brix G, Doll J, Blatter J, van Kaick G: PET 2–Fluoro-2–deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. J Nucl Med 38: 1215–1221, 1997

    Google Scholar 

  171. Salman U, Martin C, Hammond L, Chintapalli K, Denis L, Kuhn J, Rowinsky E, Phillips W: Use of a spherical 3–D blob analysis program as a method of determination of standard uptake value (SUV) for following tumor response to chemotherapeutic agents (CTA). Clin Positron Imaging 3: 152, 2000

    Google Scholar 

  172. Bergstrom M, Bonasera T, Lu L, Bergstrom E, Backlin C, Juhlin C, Langstrom B: In vitro and in vivo primate evaluation of carbon-11–etomidate and carbon-11–metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med 39: 982–989, 1998

    Google Scholar 

  173. Wu F, Orlefors H, Bergstrom M, Antoni G, Omura H, Eriksson B, Watanabe Y, L'Ngstrom B: Uptake of 14C-and 11C-labeled glutamate, glutamine and aspartate in vitro and in vivo. Anticancer Res 20: 251–256, 2000

    Google Scholar 

  174. Sauer L, Dauchy R: In vivo lactate production and utilization by Jensen sarcoma and Morris hepatoma 7288CTC. Cancer Res 46: 689–693, 1986

    Google Scholar 

  175. Dimitrakopoulou-Strauss A, Strauss L, Burger C: Quantitative PET studies in pretreated melanoma patients: a comparison of 6–[18F]fluoro-L-dopa with 18F-FDG and 15O-water using compartment and noncompartment analysis. J Nucl Med 42: 248–256, 2001

    Google Scholar 

  176. Yoshino E, Ohmori Y, Imahori Y, Higuchi T, Furuya S, Naruse S, Mori T, Suzuki K, Yamaki T, Ueda S, Tsuzuki T, Takai S: Irradiation effects on the metabolism of metastatic brain tumors: analysis by positron emission tomography and 1H-magnetic resonance spectroscopy. Sterotact Funct Neurosurg 66: 240–259, 1996

    Google Scholar 

  177. Ramos-Suzarte M, Rodriguez N, Oliva J, Iznaga-Escobar N, Perera A, Morales A, Gonzalez N, Cordero M, Torres L, Pimental G, Borrun M, Gonzalez J, Torres O, Rodriguez T, Perez R: 99mTc-labeled antihuman epidermal growth factor receptor antibody in patients with tumors of epithelial origin: part III. Clinical trials safety and diagnostic efficacy. J Nucl Med 40: 768–775, 1991

    Google Scholar 

  178. Divgi C, Welt S, Kris M, Real F, Yeh S, Gralla R, Merchant B, Schweighart S, Unger M, Larson S, Mendelsohn J: Phase I and imaging trial of indium 111–labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 83: 97–104, 1991

    Google Scholar 

  179. Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J: Imaging of human tumor xenografts with an indium-111–labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 81: 1616–1625, 1989

    Google Scholar 

  180. Davis PD, Hill S, Galbraith S, Chaplin D, Naylor M, Nolan J, Dougherty G: ZD6126: a new agent causing selective damage of tumor vasculature. Proc of AACR 41: 329, 2000 (Abstract 2085)

    Google Scholar 

  181. Choi H, Tamm E, Macapinlac H, Faria S, Podoloff D, Broemeling L, Benjamin R, Charnsangavej C: The role of CT density measurement to monitor the gastrointestinal stromal tumors after treatment with STI571: a quantitative analysis. Clin Cancer Res 7: S3699, 2001 (Abstract 233)

    Google Scholar 

  182. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma A, Pruim J, Price P: Measurement of clinical and subclinical tumor response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 35: 1773–1782, 1999

    Google Scholar 

  183. Hoffman J: NCI biomedical imaging programme. PET for Anticancer Drug Development Conference, Brussels, Belgium, 2000

  184. Hayton P, Brady M, Tarassenko L, Moore N: Analysis of dynamic MR breast images using a model of contrast enhancement. Med Image Anal 1: 207–224, 1996

    Google Scholar 

  185. Higashi K, Ueda Yoshimichi, Sakuma T, Seki H, Oguchi M, Taniguchi M, Taki S, Tonami H, Katsuda S, Yamamoto I: Comparison of [18F]FDG PET and 201T1 SPECT in evaluation of pulmonary nodules. J Nucl Med 42: 1489–1496, 2001

    Google Scholar 

  186. Strauss LG, Conti PS: The application of PET in clinical oncology. J Nucl Med 32: 623–648, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond, L.A., Denis, L., Salman, U. et al. Positron emission tomography (PET): Expanding the horizons of oncology drug development. Invest New Drugs 21, 309–340 (2003). https://doi.org/10.1023/A:1025468611547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025468611547

Navigation