Skip to main content
Log in

Stable Eocene Magnetization Carried by Magnetite and Iron Sulphides in Marine Marls (Pamplona-Arguis Formation, Southern Pyrenees, Northern Spain)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

In order to establish the magnetic carriers and assess the reliability of previous paleomagnetic results obtained for Eocene marine marls from the south Pyrenean basin, we carried out a combined paleo- and rock-magnetic study of the Pamplona-Arguis Formation, which crops out in the western sector of the southern Pyrenees (N Spain). The unblocking temperatures suggest that the characteristic remanent magnetization (ChRM) is carried by magnetite and iron sulphides. The ChRM has both normal and reversed polarities regardless of whether it resides in magnetite or iron sulphides, and represents a primary Eocene magnetization acquired before folding. Rock magnetic results confirm the presence of magnetite and smaller amounts of magnetic iron sulphides, most likely pyrrhotite, in all the studied samples. Framboidal pyrite is ubiquitous in the marls and suggests that iron sulphides formed during early diagenesis under sulphate-reducing conditions. ChRM directions carried by magnetic iron sulphides are consistent with those recorded by magnetite. These observations suggest that magnetic iron sulphides carry a chemical remanent magnetization that coexists with a remanence residing in detrital magnetite. We suggest that the south Pyrenean Eocene marls are suitable for magnetostratigraphic and tectonic purposes but not for studies of polarity transitions, secular variations and geomagnetic excursions, because it is difficult to test for short time differences in remanence lock-in time for the two minerals. The presence of iron sulphide minerals contributing to the primary magnetization in Eocene marine marls reinforces the idea that these minerals can persist over long periods of time in the geological record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentham P.A., 1992. The Tectono-Stratigraphic Development of the Western Oblique Ramp of the South-Central Pyrenean Thrust System, Northern Spain. Ph.D. Thesis, University of Southern California, Los Angeles.

    Google Scholar 

  • Berner R.A., 1971. Principles of Chemical Sedimentology. Mc-Graw-Hill, New York.

    Google Scholar 

  • Berner R.A., 1984. Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta, 48, 605-615.

    Article  Google Scholar 

  • Burbank D.W., Vergés J., Muñoz J.A. and Bentham P., 1992a. Coeval hindward-and forward-imbricating thrusting in the south-central Pyrenees, Spain: timing and rates of shortening and deposition. Geol. Soc. Am. Bull., 104, 3-17.

    Article  Google Scholar 

  • Burbank D.W., Puigdefàbregas C. and Muñoz J.A., 1992b. The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain. Geol. Soc. Am. Bull., 104, 1101-1120.

    Article  Google Scholar 

  • Canfield D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 114, 315-329.

    Article  Google Scholar 

  • Canfield D.E. and Berner R.A., 1987. Dissolution and pyritization of magnetite in anoxic marine sediment. Geochim. Cosmochim. Acta, 51, 645-659.

    Article  Google Scholar 

  • Canudo J.I., Molina E., Riveline J., Serra-Kiel J. and Sucunza M., 1988. Les événements biostratigraphyques de la zone prépyrénée d´Aragón (Espagne), de l´Eocene moyen á l´Oligocéne inférieur. Rev. Micropal., 31, 15-29 (in French).

    Google Scholar 

  • Dankers P.H., 1978. Magnetic Properties of Dispersed Natural Iron Oxides of Known Grain Size. Ph.D. Thesis, University of Utrecht.

  • Dekkers M.J., 1990. Magnetic monitoring of pyrrhotite alteration during thermal demagnetization. Geophys. Res. Lett., 17, 779-782.

    Article  Google Scholar 

  • Dekkers M.J., Mattéi J.L., Fillion G. and Rochette P., 1988. Grain-size dependence of the magnetic behavior of pyrrhotite during its low-temperature transition at 34 K. Geophys. Res. Lett., 16, 855-858.

    Google Scholar 

  • Dinarès-Turell J., McClelland E. and Santanach P., 1992. Contrasting rotations within thrust sheets and kinematics of thrust tectonics as derived from palaeomagnetic data: an example from the Southern Pyrenees. In: K.R. McClay (Ed.), Thrust Tectonics, Chapman and Hall, London, 265-276.

    Google Scholar 

  • Dinarès-Turell J. and Dekkers M.J., 1999. Diagenesis and remanence acquisition in the Lower Pliocene Trubi marls at Punta di Maiata (southern Sicily): palaeomagnetic and rock magnetic observations. In: D.H. Tarling and P. Turner (Eds.), Palaeomagnetism and Diagenesis in Sediments, Geol. Soc. London, Special Publication, 151, 53-69.

  • Florindo F. and Sagnotti L., 1995. Palaeomagnetism and rock-magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophys. J. Int., 123, 340-354.

    Article  Google Scholar 

  • Hogan P.J., 1993. Geochronologic, Tectonic and Stratigraphic Evolution of the Southwest Pyrenean Foreland Basin, Northern Spain. Ph.D. Thesis, University of Southern California, Los Angeles.

    Google Scholar 

  • Hogan P.J. and Burbank D.W., 1996. Evolution of the Jaca piggyback basin and emergence of the External Sierra, southern Pyrenees. In: P.F. Friend and C.J. Dabrio (Eds.), Tertiary Basins of Spain, Cambridge Univ. Press, Cambridge, 153-160.

    Google Scholar 

  • Holl J.E. and Anastasio D.J., 1993. Paleomagnetically derived folding rates in the southern Pyrenees, Spain. Geology, 21, 271-274.

    Article  Google Scholar 

  • Housen B.A. and Musgrave R.J., 1996. Rock-magnetic signature of gas hydrates in accretionary prism sediments. Earth Planet. Sci. Lett., 139, 509-519.

    Article  Google Scholar 

  • Horng C.-S. Torii M., Shea K.-S. and Kao S.-J., 1998. Inconsistent magnetic polarities between greigite-and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth Planet. Sci. Lett., 164, 467-482.

    Article  Google Scholar 

  • Jiang W.-T., Horng C.-S., Roberts A.P. and Peacor D.R., 2001. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth Planet. Sci. Lett., 193, 1-12.

    Article  Google Scholar 

  • Karlin R., 1990. Magnetite diagenesis in marine sediments from the Oregon continental margin. J. Geophys. Res., 95, 4405-4419.

    Google Scholar 

  • Katz B., Elmore R.D. and Engel M.H., 1998. Authigenesis of magnetite in organic-rich sediments next to a dike: implications for thermoviscous and chemical remagnetizations. Earth Planet. Sci. Lett., 163, 221-234.

    Article  Google Scholar 

  • Krs M., Krsová M., Pruner P., Zeman A., Novák F. and Jansa J., 1990. A petromagnetic study of Miocene rocks bearing micro-organic material and the magnetic mineral greigite (Sokolov and Cheb basins, Czechoslovakia). Phys. Earth Planet. Inter., 63, 98-112.

    Article  Google Scholar 

  • Krs M., Novák F., Pruner P., Kouklíková L. and Jansa J., 1992. Magnetic properties of greigitesmythite mineralization in brown-coal basins of the Krušné hory Piedmont, Bohemia. Phys. Earth Planet. Inter., 70, 273-287.

    Article  Google Scholar 

  • Larrasoaña J.C., Parés J.M., Millán H., DelValle, J. and Pueyo E.L., 2003. Paleomagnetic, structural and stratigraphic constraints on tranverse fault development during basin inversion: The Pamplona Fault (Pyrenees, N Spain). Tectonics, in press

  • Leslie B.W., Lund S.P. and Hammond D.E., 1990. Rock magnetic evidence of dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California continental borderland. J. Geophys. Res., 95, 4437-4452.

    Google Scholar 

  • Linssen J.H., 1988. Preliminary results of a study of four successive sedimentary reversal records from the Mediterranean. Phys. Earth Planet. Inter., 52, 207-231.

    Article  Google Scholar 

  • Lowrie W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17, 159-162.

    Article  Google Scholar 

  • Mary C., Iaccarino S., Courtillot V., Besse J. and Aisaoui D.M., 1993. Magnetostratigraphy of Pliocene sediments from the Stirone river (Po Valley). Geophys. J. Int., 112, 359–380.

    Article  Google Scholar 

  • Millán H., Aurell M. and Meléndez A., 1994. Synchronous detachment folds and coeval sedimentation in the Prepyrenean External Sierras (Spain): a case study for a tectonic origin of sequences and system tracks. Sedimentology, 41, 1001-1024.

    Article  Google Scholar 

  • Moskowitz B.M., Frankel R.B. and Bazylinski D.A., 1993. Rock-magnetic criteria for the detection of biogenic magnetite. Earth Planet. Sci. Lett., 120, 283-300.

    Article  Google Scholar 

  • Oldfield F., 1994. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near shore marine sediments. J. Geophys. Res., 99, 9045-9050.

    Google Scholar 

  • Passier H.F., de Lange G.J. and Dekkers M.J., 2001. Magnetic properties and geochemistry of the active oxidation front at the youngest sapropel in the eastern Mediterranean Sea. Geophys. J. Int., 145, 604-614.

    Article  Google Scholar 

  • Pueyo E.L., Millán H., Pocoví J. and Parés J.M., 1997. Cinemática rotacional del cabalgamiento basal surpirenaico en las Sierras Exteriores Aragonesas: datos magnetotectónicos. Acta Geol. Hisp., 32, 237-256 (in Spanish).

    Google Scholar 

  • Pueyo E.L., Millán H. and Pocoví A., 2002. Rotation velocity of a thrust: a paleomagnetic study in the External Sierras (Southern Pyrenees). Sedim. Geol., 146, 191-208.

    Article  Google Scholar 

  • Pueyo E.L, Pocoví A., Parés J.M., Millán H. and Larrasoaña J.C., 2003. Thrust ramp geometries and spurious rotations of paleomagnetic vectors. Stud. Geophys. Geod., 47, 331–357.

    Article  Google Scholar 

  • Puigdefàbregas C., 1975. La sedimentación molásica de la cuenca de Jaca. Pirineos, 104, 1–188 (in Spanish).

    Google Scholar 

  • Reynolds R.L., Fishman N.S. and Hudson M.R., 1991. Sources of aeromagnetic anomalies over Cement Oil Field (Oklahoma), Simpson Oil Field (Alaska), and the Wyoming-Idaho-Utah Thrust Belt. Geophysics, 56, 606–617.

    Article  Google Scholar 

  • Reynolds R.L., Tuttle M.N., Rice C.A., Fishman N.S., Karachewsky J.A. and Sherman D.M., 1994. Magnetization and geochemistry of greigite-bearing Cretaceous strata, North Slope Basin, Alaska. Am. J. Sci., 294, 485-528.

    Article  Google Scholar 

  • Roberts A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett., 134, 227-236.

    Article  Google Scholar 

  • Roberts A.P. and Turner G.M., 1993. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth Planet. Sci. Lett., 115, 257-273.

    Article  Google Scholar 

  • Rochette P., Fillion G., Mattéi J.L. and Dekkers M.J., 1990. Magnetic transition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks. Earth Planet. Sci. Lett., 98, 319-328.

    Article  Google Scholar 

  • Rochette P., Ménard G. and Dunn R., 1992. Thermochronometry and cooling rates deduced from single sample records of successive magnetic polarities during uplift of metamorphic rocks in the Alps (France). Geophys. J. Int., 108, 491-501.

    Article  Google Scholar 

  • Sweeney R.E. and Kaplan I.R., 1973. Pyrite framboid formation. Laboratory synthesis and marine sediments. Econ. Geol., 68, 618-634.

    Article  Google Scholar 

  • Taberner C., Dinarés-Turell J., Giménez J. and Docherty C., 1999. Basin infill architecture and evolution from magnetostratigraphic cross-basin correlations in the southeastern Pyrenean foreland basin. Geol. Soc. Am. Bull., 111, 2-21.

    Article  Google Scholar 

  • Teixell A., 1996. The Ansó transect of the southern Pyrenees: basement and cover thrust geometries. J. Geol. Soc. London, 153, 301-310.

    Article  Google Scholar 

  • Torii M., Fukuma K., Horng C.-S. and Lee T.-Q., 1996. Magnetic discrimination of pyrrhotite-and greigite-bearing sediment samples. Geophys. Res. Lett., 23, 1813-1816.

    Article  Google Scholar 

  • Tric E., Laj C., Jéhanno C., Valet J.-P., Kissel C., Mazaud A. and Iaccarino S., 1991. High resolution record of the upper Olduvai transition from Po Valley (Italy) sediments: support for dipolar transition geometry? Phys. Earth Planet. Inter., 65, 319-336.

    Article  Google Scholar 

  • van Hoof A.A.M. and Langereis C.G., 1991. Reversal records in marine marls and delayed acquisition of remanent magnetization. Nature, 351, 223-224.

    Article  Google Scholar 

  • Verosub K.L. and Roberts A.P., 1995. Environmental magnetism: past, present and future. J. Geophys. Res., 100, 2175-2192.

    Google Scholar 

  • Weaver R., Roberts A.P. and Baker A.J., 2002. A late diagenetic (synfolding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments. Earth Planet. Sci. Lett., 200, 365-380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.C. Larrasoaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larrasoaña, J., Parés, J. & Pueyo, E. Stable Eocene Magnetization Carried by Magnetite and Iron Sulphides in Marine Marls (Pamplona-Arguis Formation, Southern Pyrenees, Northern Spain). Studia Geophysica et Geodaetica 47, 237–254 (2003). https://doi.org/10.1023/A:1023770106613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023770106613

Navigation