Skip to main content
Log in

Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This paper reviews progress in the development of oxygen storage materials for automotive exhaust catalysts. The research was mainly conducted as a study and development exercise in the author's laboratory in Japan.

Ceria-lanthana solid solutions (CL) and the first generation of ceriazirconia solid solutions (CZ) were developed as excellent oxygen storage materials for automotive catalysts in the 1980s. These materials consist of ceria doped with less than 20 mol% of La4+ or Zr4+. An increase in oxygen defects in CL and CZ under reductive conditions is responsible for an enhanced oxygen storage capability on the cerium atoms. An accurate measure of the oxygen storage capacity (OSC) per cerium is very important for theoretical and practical treatments of the catalyst. The term “partial OSC” was introduced to describe this capacity and to differentiate it from the usual definition of the OSC, known also as the “total OSC”. After the development of CL and CZ, a new technology was developed to dissolve more than 20 mol% of zirconia in the ceria, allowing second generation CZ and third generation CZ (known as ACZ, which is doped with alumina) to be successfully developed in the 1990s. The partial OSC of these materials increases with increasing amounts of zirconia dissolved in the ceria, and also with decreasing material particle size after an engine durability test. In the case of ACZ, alumina was added to CZ based on the “diffusion barrier concept”, in which a diffusion barrier layer inhibits the coagulation of CZ and A when the material is required for duty at high temperature in air.

Furthermore, the relationship between the total or partial OSC and the structure of the ceriazirconia solid solutions is explained in this paper.

For ceriazirconia solid solutions composed of equimolar CeO2 and ZrO2(Ce/Zr=1), the total or partial OSC of the κ-phase CeZrO4, in which the cerium and zirconium ions are regularly distributed, was about twice as large as that of a ceriazirconia solid solution with a relatively irregular distribution of cerium and zirconium ions, and about five times larger than that of a mixture of ceria powder and zirconia containing only a small amount of ceriazirconia solid solution. It corresponds to about 89% of the theoretical maximum value.

For a ceriazirconia solid solution composed of non-equimolar CeO2 and ZrO2(Ce/Zr ≠ 1), the partial OSC of a ceria-κ-phase solid solution with a zirconia content of between 30 and 50mol% is much higher than that of a ceriazirconia solid solution of the same zirconia content. The partial OSC of a κ-phase and zirconia mixed oxide, which is formed by reducing the material at 1200 °C, reaches a value above 0.20 mol-O2/mol-Ce (about 80% of the theoretical maximum value of the partial OSC), when the zirconia content is between 50 and 80 mol%.

The Toyota Motor Corp. has put automotive three-way catalysts containing the first, second and third generations of CZ into practical use on a global basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Barnes, R.L. Klimisch and B.B. Krieger, SAE Paper 730200 (1973).

  2. Y. Kaneko, H. Kobayashi, O. Hirano and O. Nakayama, SAE Paper 780607 (1978).

  3. J.H. Jones, J.T. Kumer, K. Otto, M. Shelef and E.E. Weaver, Environ. Sci. Tech. 5 (1987) 790.

    Google Scholar 

  4. JP Laid-open No. 48-63985.

  5. JP No. 865370 (1977).

  6. JP No. 935113 (1978).

  7. JP No. 958489 (1979).

  8. JP No. 1033368 (1981).

  9. Y. Watanabe, A. Banno and M. Sugiura, Appl. Clay Sci. 16 (2000) 59.

    Google Scholar 

  10. K. Yamazaki, N. Takahashi, H. Shinjoh and M. Sugiura, Adv. Tech. Mat. Mat. Proc. J., 4 (2002) 1; Proc. 8th Japan-Korea Symp. on Catalysis P-14 (2001) 135.

    Google Scholar 

  11. M. Ohashi, Syokubai (Catalysts & Catalysis) 29 (1987) 598 (in Japanese).

    Google Scholar 

  12. J.G. Rivard, SAE Paper 730005 (1973).

  13. USP No. 3815561 (1974), JP Laid-open 49-68122 (1974).

  14. JP No. 928463 (1978).

  15. I. Gorille, N. Rittmansberger and P. Werner, SAE 750368 (1975).

  16. JP No. 943275 (1979).

  17. JP No. 999752 (1980).

  18. JP No. 1123788 (1982).

  19. JP No. 967909 (1979).

  20. H.S. Gandhi, A.G. Piken, M. Shelef and R.G. Delesh, SAE Paper 760201 (1976).

  21. H.C. Yao and Y.F. Yu Yao, J. Catal. 86 (1984) 254.

    Google Scholar 

  22. JP No. 1290398 (1985).

  23. M. Funabiki and T. Yamada, SAE Paper 881684 (1988).

  24. M. Funabiki and T. Yamada, Syokubai (Catalysts & Catalysis) 31 (1989) 566 (in Japanese).

    Google Scholar 

  25. JP No. 1330556 (1986).

  26. N. Miyoshi, S. Matsumoto, M. Ozawa and M. Kimura, SAE Paper 891970 (1989).

  27. S. Matsumoto, N. Miyoshi, T. Kanazawa, M. Kimura and M. Ozawa, in: Catalysis Science and Technology, Vol. 1, ed. S. Yoshida, T.N. Tabezawa and T. Ono (Kodansha-VCH, 1991) p. 335.

  28. M. Ozawa, M. Kimura and A. Isogai, J. Mater. Sci. 26 (1991) 4818.

    Google Scholar 

  29. M. Ozawa, M. Kimura and A. Isogai, J. Alloys Comp. 193 (1993) 73.

    Google Scholar 

  30. JP Laid-open No. 63-116741 (1988).

  31. USP No. 4927799 (1990).

  32. JP No. 2140560 (1999).

  33. JP Laid-open No. 09-155192 (1997).

  34. USP No. 5958827 (1999).

  35. JP No. 3238316 (2001).

  36. H. Sobukawa, A. Suda, Y. Ukyo, T. Suzuki, M. Kimura, M. Sugiura, Y. Ikeda and H. Hirabayashi, Syokubai (Catalyst) 43 (2001) 107 (abstract of 87th Meeting of Catalysis Society of Japan, Kyusyu, March 2001, No. 2A13) (in Japanese).

    Google Scholar 

  37. M. Sugiura, A. Suda, Y. Nagai, T. Suzuki and H. Sobukawa, Abstract of 88th Meeting of Catalysis Society of Japan, Oita, October 2001, No. 3D25 (in Japanese).

  38. T. Kanazawa, J. Suzuki, T. Takada, T. Suzuki, A. Morikawa, A. Suda, H. Sobukawa and M. Sugiura, Abstract of 4th Tokyo Conf. Adv. Catal. Sci. Tech., Tokyo, July 2002, No. IO-A11 (TOCAT-4).

  39. T. Kanazawa, J. Suzuki, T. Takada, T. Suzuki, A. Morikawa, H. Sobukawa and M. Sugiura, Abstract of 88th Meeting of Catalysis Society of Japan, Oita, October 2001, No. 3A09 (in Japanese).

  40. T. Suzuki, A. Morikawa, H. Sobukawa, M. Kimura, A. Suda, M. Sugiura, T. Kanazawa and S. Matsumoto, Abstract of 88th Meeting of Catalysis Society of Japan, Oita, October 2001, No. 3A08 (in Japanese).

  41. J. Kaspar, P. Fornasiero and M. Graziani, Catal. Today 50 (1999) 285.

    Google Scholar 

  42. C.E. Hori, A. Brenner, K.Y. Simon Ng, K.M. Rahmoeller and D. Belton, Catal. Today 50 (1990) 299.

    Google Scholar 

  43. S. Rossignol, Y. Madier and D. Duprez, Catal. Today 50 (1999) 261.

    Google Scholar 

  44. T. Tanabe, A. Suda, C. Descorme, D. Duprez, H. Shinjoh and M. Sugiura, Stud. Surf. Sci. Catal. 138 (2001) 135.

    Google Scholar 

  45. J. Kaspar, R.D. Monte, P. Fornasiero, M. Graziani, H. Bradshaw and C. Norman, Topics Catal. 16/17 (2001) 83.

    Google Scholar 

  46. A. Suda, T. Kandori, N. Terao, Y. Ukyo, H. Sobukawa and M. Sugiura: J. Mater. Sci. Lett. 17 (1998) 89.

    Google Scholar 

  47. A. Suda, T. Kandori, Y. Ukyou, H. Sobukawa and M. Sugiura, J. Ceram. Soc. Japan 108 (2000) 473.

    Google Scholar 

  48. A. Suda, H. Sobukawa, T. Kandori, Y. Ukyou and M. Sugiura, J. Ceram. Soc. Japan 109 (2001) 570.

    Google Scholar 

  49. A. Suda, H. Sobukawa, T. Suzuki, T. Kandori, Y. Ukyou and M. Sugiura, J. Ceram. Soc. Japan 109 (2001) 177.

    Google Scholar 

  50. A. Suda, Y. Ukyou, H. Sobukawa and M. Sugiura, J. Ceram. Soc. Japan 110 (2002) 126.

    Google Scholar 

  51. Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda and M. Sugiura, J. Synchrotron Rad. 8 (2001) 616.

    Google Scholar 

  52. Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda and M. Sugiura, Catal. Today 74 (2002) 225.

    Google Scholar 

  53. S. Otsuka-Yao, H. Morikawa, N. Izu and K. Okuda, J. Jpn. Inst. Metals 59 (1995) 1237 (in Japanese).

    Google Scholar 

  54. T. Omata, H. Kishimoto, S. Otsuka-Yao-Matsumoto, N. Ohtori and N. Umesaki, J. Solid State Chem 147 (1999) 573.

    Google Scholar 

  55. H. Kishimoto, T. Omata, S. Otsuka-Yao-Matsuo, K. Ueda, H. Hosono and H. Kawazoe, J. Alloys Comp. 312 (2000) 94.

    Google Scholar 

  56. G. Balducci, P. Fornasiero, R. Di Monte, J. Kaspar, S. Meriani and M. Graziani, Catal. Lett. 33 (1995) 193.

    Google Scholar 

  57. P. Fornasiero, J. Kaspar and M. Graziani, J. Catal. 167 (1997) 576.

    Google Scholar 

  58. R.D. Shannon and C.T. Prewitt, Acta Cryst. B 25 (1969) 925.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiura, M. Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions. Catalysis Surveys from Asia 7, 77–87 (2003). https://doi.org/10.1023/A:1023488709527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023488709527

Navigation