Skip to main content
Log in

Role of Water Vapor in Chromia-Scale Growth at Low Oxygen Partial Pressure

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of pure chromium and ODS-Cr alloys in Ar-H2-H2O and Ar-O2-H2O was studied at 1000°C. At high oxygen potentials, the addition of H2O to the gas had negligible effect on the scaling behavior. However, at low oxygen potentials, when the pH2O/pH2 ratio was held constant, the oxidation rate increased with water partial pressure. Increasing values of pH2O/pH2 led to more rapid rates. At fixed pH2O values, the rate increased with increasing pH2. Compact scales were formed under all conditions. In addition Cr2O3 blades grew on the scale surface when pure chromium was reacted with H2O/H2 mixtures, but not in reaction with O2/H2O. These blades did not form when Y2O3 dispersion-strengthened material was reacted. A model, in which oxide growth was sustained by diffusion of chromium vacancies and adsorption of H2O on oxide exposed to low oxygen-activity gas led to the formation of hydroxyl species, explained most of the complex effects of gas composition on scale growth and blade formation. However, it failed to account for the observed increase in scaling rate with pH2 at fixed pH2O. The latter effect is ascribed to alteration of an additional contribution to diffusion from chromium interstitials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Wersing, E. Ivers-Tiffe, M. Schiessl, and H. Greiner, Proc. Symp. Solid Oxide Fuel Cells, Nagoya, Japan, 13–14 Nov. 1989 (Science House, Tokyo), 1989, p. 33.

    Google Scholar 

  2. W. J. Quadakkers, H. Greiner, and W. Köck, Proc. First European Solid Oxide Fuel Cell Forum, 3–7 October 1994 (Lucerne, Switzerland, 1994), p. 525.

    Google Scholar 

  3. H. P. Martinez and W. Köck, Industrie 46, 26(1993).

    Google Scholar 

  4. Th. Malkow, W. J. Quadakkers, H. Nickel, and L. Singheiser, Jül-Bericht 3589, ISSN 0944–2952, FZ Juelich, IWV-2 (1998).

  5. M. Hänsel, W. J. Quadakkers, L. Singheiser, and H. Nickel, Jül-Bericht 3583, ISSN 0944–2952, FZ Juelich, IWV-2 (1998).

  6. W. J. Quadakkers, J. F. Norton, S. Canetoli, K. Schuster, and A. Gil, Proc. 3rd Conf. Microscopy of Oxidation, p. 609(1996).

  7. X. G. Zheng and D. J. Young, Oxid. Met., 42, 163–190 (1994).

    Google Scholar 

  8. F. Armanet, A. Vejux, G. Johannesson, and G. Beranger, Oxid. Metals 15, 3–8 (1981).

    Google Scholar 

  9. E. A. Polman, T. Fransen, and P. J. Gellings, Oxid. Met., 32, 433–447 (1989).

    Google Scholar 

  10. S. Roure, F. Czerwinski, and A. Petric, Oxid. Met., 42, 75–102 (1994).

    Google Scholar 

  11. F. Armanet, G. Beranger, and D. David, Proc. 8th Intern. Congr. Metallic Corros. (DECHEMA, Frankfurt, 1981), p. 735–738

    Google Scholar 

  12. G. Raynaud and R. Rapp, Oxid. Met. 21, 89(1984).

    Google Scholar 

  13. D. A. Voss, E. P. Butler, and T. E. Mitchell, Metall. Trans. A 13, 929–935 (1982).

    Google Scholar 

  14. F. C. Frank, Acta Crystallogr. 4, 497–550 (1951).

    Google Scholar 

  15. N. A. Gokcen, J. Amer. Chem. Soc. 73, 3789(1951).

    Google Scholar 

  16. C. T. Lynch, ed., Handbook of Materials Science, (CRC Press, Cleveland, Ohio, 1974), p. D-180.

    Google Scholar 

  17. D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood, Oxid. Met. 45, 529–620 (1996).

    Google Scholar 

  18. C. Wagner, Z. Phys. Chem. B 21, 25(1933).

    Google Scholar 

  19. C. Wagner, and K. Grünwald, Z. Phys. Chem. B 32, 447(1937).

    Google Scholar 

  20. C. Wagner and K. Grünwald, Z. Phys. Chem. B 40, 455(1938).

    Google Scholar 

  21. P. Kofstad, Oxid. Met. 44, 3(1995).

    Google Scholar 

  22. P. Kofstad and K. P. Lillerud, J. Electrochem. Soc. 127, 2410(1980).

    Google Scholar 

  23. P. Kofstad, High Temperature Corrosion (Elsevier Science, New York, 1988).

    Google Scholar 

  24. F. A. Kröger, The Chemistry of Imperfect Crystals, 2nd edn. (North-Holland, Amsterdam, 1974).

    Google Scholar 

  25. B. Tveten, G. Hultquist, and T. Norby, Oxid. Met. 51, 221(1999).

    Google Scholar 

  26. T. Norby, J. Phys. IV 3, 99(1993).

    Google Scholar 

  27. T. Norby, Adûan. Ceram. 23, 107(1987).

    Google Scholar 

  28. W. J. Quadakkers, H. Holzenbrecher, K. Briefs, and H. Beske, in The Role of Actiûe Elements: the Oxidation Behaûior of High Temperature Metals and Alloys (E. Lang, ed., Elsevier, London, 1988).

    Google Scholar 

  29. B. A. Pint, Oxid. Met. 45, 1(1996).

    Google Scholar 

  30. W. J. Quadakkers, J. F. Norton, J. H. Penkalla, U. Breuer, A. Gil, T. Rieck, and M. Hänsel, Proc. 3rd Conf. Microscopy of Oxidation, p. 221(1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hänsel, M., Quadakkers, W. & Young, D. Role of Water Vapor in Chromia-Scale Growth at Low Oxygen Partial Pressure. Oxidation of Metals 59, 285–301 (2003). https://doi.org/10.1023/A:1023040010859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023040010859

Navigation