Skip to main content
Log in

Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Since the fragmentation of natural habitats is one of the most serious problems for many endangered species, it is highly interesting to study the properties of fragmented landscapes. As a basic property, landscape connectivity and its effects on various ecological processes are frequently in focus. First, we discuss the relevance of some graph properties in quantifying connectivity. Then, we propose a method how to quantify the relative importance of habitat patches and corridors in maintaining landscape connectivity. Our combined index explicitly considers pure topological properties and topographical measures, like the quality of both patches (local population size) and corridors (permeability). Finally, for illustration, we analyze the landscape graph of the endangered, brachypterous bush-cricket Pholidoptera transsylvanica. The landscape contains 11 patches and 13 corridors and is situated on the Aggtelek Karst, NE-Hungary. We characterize the importance of each node and link of the graph by local and global network indices. We show how different measures of connectivity may suggest different conservation preferences. We conclude, accordingly to our present index, by identifying one specific habitat patch and one specific corridor being in the most critical positions in maintaining connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R., Jeong H. and Barabási A.-L. 2000. Error and attack tolerance of complex networks. Nature 406: 378–381.

    Article  CAS  PubMed  Google Scholar 

  • van Apeldoorn R.C., Oostenbrink W.T., van Winden A. and van der Zee F.F. 1992. Effects of habitat fragmentation on the bank vole, Clethrionomys glareolus, in an agricultural landscape. Oikos 65: 265–274.

    Google Scholar 

  • Báldi A. and Kisbenedek T. 1999. Orthopterans in small steppe patches: an investigation for the best-fit model of the species-area curve and evidences for their non-random distribution in the patches. Acta Oecologica 20: 125–132.

    Google Scholar 

  • Beier P. and Noss R.F. 1998. Do habitat corridors provide connectivity? Conservation Biology 12: 1241–1252.

    Article  Google Scholar 

  • Burkey T.V. 1989. Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments. Oikos 55: 75–81.

    Google Scholar 

  • Burkey T.V. 1999. Extinction in fragmented habitats predicted from stochastic birth-death processes with density dependence. Journal of Theoretical Biology 199: 395–406.

    PubMed  Google Scholar 

  • Cabeza M. and Moilanen A. 2001. Design of reserve networks and the persistence of biodiversity. Trends in Ecology and Evolution 16: 242–248.

    PubMed  Google Scholar 

  • Cantwell M.D. and Forman T.T. 1993. Landscape graphs: Ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecology 8: 239–255.

    Google Scholar 

  • Carlson A. and Edenhamn P. 2000. Extinction dynamics and the regional persistence of a tree frog metapopulation. Proceedings of the Royal Society of London, series B 267: 1311–1313.

    Google Scholar 

  • Crooks K.R. and Soulé M.E. 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400: 563–566.

    CAS  Google Scholar 

  • Dias P.C. 1996. Sources and sinks in population biology. Trends in Ecology and Evolution 11: 326–330.

    Google Scholar 

  • Dunning J.B., Danielson B.J. and Pulliam H.R. 1992. Ecological processes that affect populations in complex landscapes. Oikos 65: 169–175.

    Google Scholar 

  • Fahrig L. and Merriam G. 1985. Habitat patch connectivity and population survival. Ecology 66: 1762–1768.

    Google Scholar 

  • Gilbert F., Gonzalez A. and Evans-Freke I. 1998. Corridors maintain species richness in the fragmented landscapes of a micro-ecosystem. Proceedings of the Royal Society of London, series B 265: 577–582.

    Google Scholar 

  • Hanski I. 1998. Metapopulation dynamics. Nature 396: 41–49.

    Article  CAS  Google Scholar 

  • Hanski I. 1999. Habitat connectivity, habitat continuity, and meta-populations in dynamic landscapes. Oikos 87: 209–219.

    Google Scholar 

  • Harary F. 1969. Graph Theory. Addison Wesley, Cambridge, Massachusetts, USA.

    Google Scholar 

  • Higashi M. and Burns T.P. (eds) 1991. Theoretical Studies on Ecosystems - the Network Perspective. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ivanciuc O., Balaban T.-S. and Balaban A.T. 1993. Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices. Journal of Mathematical Chemistry 12: 309–318.

    CAS  MathSciNet  Google Scholar 

  • Johnson M.P. 2000. Temporally explicit habitat ecology and the coexistence of species. Proceedings of the Royal Society of London, series B 267: 1967–1972.

    Google Scholar 

  • Jordán F. 2000. A reliability-theory approach to corridor design. Ecological Modelling 128: 211–220.

    Google Scholar 

  • Jordán F. 2001. Adding function to structure - comments on Palmarola landscape connectivity. Community Ecology, 2: 133–135.

    Google Scholar 

  • Keitt T.H., Urban D.L. and Milne B.T. 1997. Detecting critical scales in fragmented landscapes. Conservation Ecology [online] 1:(1):4, URL: http://www.consecol.org/vol1/iss1/art4.

    Google Scholar 

  • Keymer J.E., Marquet P.A., Velasco-Hernández J.X. and Levin S.A. 2000. Extinction thresholds and metapopulation persistence in dynamic landscapes. The American Naturalist 156: 478–494.

    Google Scholar 

  • Kruess A. and Tscharntke T. 1994. Habitat fragmentation, species loss, and biological control. Science 264: 1581–1584.

    Google Scholar 

  • Lande R. 1988. Genetics and demography in biological conservation. Science 241: 1455–1460.

    CAS  PubMed  Google Scholar 

  • Meglécz E., Pecsenye K., Varga Z. and Solignac M. 1998. Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (Linnaeus, 1758) (Lepidoptera) populations. Hereditas 128: 95–103.

    Google Scholar 

  • Metzger J.P. and Décamps H. 1997. The structural connectivity threshold: an hypothesis in conservation biology at the landscape scale. Acta Oecologica 18: 1–12.

    Google Scholar 

  • Nagy B., Rácz I. and Varga Z. 1999. The orthopteroid insect fauna of the Aggtelek karst region (NE Hungary) referring to zoogeography and nature conservation. In: Mahunka S. (ed.), The fauna of the Aggtelek National Park. Akadémiai Kiadó, Budapest, Hungary, pp. 83–102.

    Google Scholar 

  • O’Neill R.V., Krummel J.R., Gardner R.H., Sugihara G., Jackson B., DeAngelis D.L. et al. 1988. Indices of landscape pattern. Landscape Ecology 1: 153–162.

    Article  Google Scholar 

  • Orci K.M. 1997. A comparative study on grasshopper (Orthoptera) communities in the Aggtelek Biosphere Reserve. In: Tóth E. and Horváth R. (eds), Research in Aggtelek National Park and Biosphere Reserve. ANP directorate, Aggtelek, Hungary, pp. 109–116.

    Google Scholar 

  • Pickett S.T.A. and Cadenasso M.L. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269: 331–334.

    CAS  Google Scholar 

  • Pimm S.L. 1991. The Balance of Nature? University of Chicago Press, Chicago, Illinois, USA.

    Google Scholar 

  • Plavsic D., Nikolic S., Trinajstic N. and Mihalic Z. 1993. On the Harary index for the characterization of chemical graphs. Journal of Mathematical Chemistry 12: 235–250.

    CAS  Google Scholar 

  • Pulliam H.R. 1988. Sources, sinks, and population regulation. The American Naturalist 132: 652–661.

    Google Scholar 

  • Rácz I., Varga Z., Mezô H. and Parragh D. 1997. Studies on the Orthoptera fauna of the Aggtelek Karst. In: Tóth E. and Horváth R. (eds), Research in Aggtelek National Park and Biosphere Reserve. ANP directorate, Aggtelek, Hungary, pp. 99–108.

    Google Scholar 

  • Ricotta C., Stanisci A., Avena G.C. and Blasi C. 2000. Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecology 1: 89–94.

    Google Scholar 

  • Saccheri I., Kuussaari M., Kankare M., Vikman P., Fortelius W. and Hanski I. 1998. Inbreeding and extinction in a butterfly meta-population. Nature 392: 491–494.

    CAS  Google Scholar 

  • Schumaker N.H. 1996. Using landscape indices to predict habitat connectivity. Ecology 77: 1210–1225.

    Google Scholar 

  • Spiller D.A. and Schoener T.W. 1998. Lizards reduce spider species richness by excluding rare species. Ecology 79: 503–516.

    Google Scholar 

  • Shaffer M.L. 1981. Minimum population sizes for species conservation. BioScience 31: 131–134.

    Google Scholar 

  • Sugihara G. 1984. Graph theory, homology and food webs. Proceedings of Symposia in Applied Mathematics 30: 83–101.

    Google Scholar 

  • Taylor P.D., Fahrig L., Henein K. and Merriam G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.

    Google Scholar 

  • Thomas C.D. 2000. Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society of London, series B 139: 139–145.

    Google Scholar 

  • Tiebout H.M. III and Anderson R.A. 1997. A comparison of corridors and intrinsic connectivity to promote dispersal in transient successional landscapes. Conservation Biology 11: 620–627.

    Article  Google Scholar 

  • Tilman D., May R.M., Lehman C.L. and Nowak M.A. 1994. Habitat destruction and the extinction debt. Nature 371: 65–66.

    Article  Google Scholar 

  • Tischendorf L. and Fahrig L. 2000a. On the usage and measurement of landscape connectivity. Oikos 90: 7–19.

    Article  Google Scholar 

  • Tischendorf L. and Fahrig L. 2000b. How should we measure landscape connectivity? Landscape Ecology 15: 633–641.

    Article  Google Scholar 

  • Turner M.G. 1989. Landscape ecology: the effect of pattern on process. Annual Reviews of Ecology and Systematics 20: 171–197.

    Google Scholar 

  • Turner M.G., Gardner R.H., Dale V.H. and O’Neill R.V. 1989. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121–129.

    Google Scholar 

  • Urban D. and Keitt T. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82: 1205–1218.

    Google Scholar 

  • Varga Z. 1997. Biogeographical outline of the invertebrate fauna of the Aggtelek Karst and surrounding areas. In: Tóth E. and Horváth R. (eds), In Research in Aggtelek National Park and Biospherre Reserve. ANP Directorate, Aggtelek, Hungary, pp. 87–94.

    Google Scholar 

  • Varga Z.V., Sipos J., Orci K.M. and Rácz I. 2000. Semi-arid grasslands on the Aggtelek Karst: phytocoenological relationships, Orthopteranand Lepidopteran communities. In: Virágh K. and Kun A. (eds), Vegetation and Dynamism. MTA ÖBKI, Vácrátót, Hungary, pp. 195–238, (in Hungarian).

    Google Scholar 

  • Varga-Sipos J. and Varga Z. 1997. Phytocenology of semi-dry grasslands in the Aggtelek Karst area (N Hungary). In: Tóth E. and Horváth R. (eds), In Research in Aggtelek National Park and Biosphere Reserve. ANP Directorate, Aggtelek, Hungary, pp. 59–78.

    Google Scholar 

  • Wiens J.A., Stenseth N.C., Van Horne B. and Anker Ims R. 1993. Ecological mechanisms and landscape ecology. Oikos 66: 369–380.

    Google Scholar 

  • Zabel J. and Tscharntke T. 1998. Does fragmentation of Urtica habitats affects phytophagous and predatory insects differentially? Oecologia 116: 419–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordán, F., Báldi, A., Orci, KM. et al. Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landscape Ecol 18, 83–92 (2003). https://doi.org/10.1023/A:1022958003528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022958003528

Navigation