Skip to main content
Log in

Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The linear and nonlinear characteristics of optical slow-wave structures made of direct coupled Fabry–Pérot and Ring Resonators are discussed. The main properties of an infinitely long slow-wave structure are derived analytically with an approach based on the Bloch theory. The spectral behaviour is periodical and closed form expressions for the bandwidth, the group velocity, the dispersion and the linear and nonlinear induced phase shift are derived. For structures of finite length the results still hold providing that proper input/output matching sections are added. In slow-wave structures most of the propagation parameters are enhanced by a factor S called the slowing ratio. In particular nonlinearities result strongly enhanced by the resonant propagation, so that slow-wave structures are likely to become a key point for all-optical processing devices. A numerical simulator has been implemented and several numerical examples of propagation are discussed. It is also shown as soliton propagation is supported by slow-wave structures, demonstrating the flexibility and potentiality of these structures in the field of the all-optical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absil, P.P., J.V. Hrynicwicz, B.E. Little, P.S. Cho, R.A. Wilson, L.G. Joneckis and P.-T. Ho. Opt. Lett. 25 554, 2000.

    Google Scholar 

  • Agrawal, G.P. Nonlinear Fiber Optics, Academic Press, New York, 1999.

    Google Scholar 

  • Brillouin, L. Wave Propagation and Group Velocity, Academic Press, New York, 1960.

    Google Scholar 

  • Christodoulides, D.N. and N.K. Efremidis. Opt. Lett. 27 568, 2002.

    Google Scholar 

  • Collin, R.E. Foundations for Microwave Enginnering, McGraw-Hill, Singapore, 1992.

    Google Scholar 

  • de Sterke, C.M. and J.E. Sipe. 'Gap solitons' Progress in Optics, ed. E. Wolf, Vol. 33, Elsevier, Amsterdam, 1994, 203.

    Google Scholar 

  • Hau, L.V., S.E. Harris, Z. Dutton and C.H. Behroozi, Nature (London) 397 594, 1999.

    Google Scholar 

  • Heebner, J.E. and R.W. Boyd. Opt. Lett. 24, 847, 1999.

    Google Scholar 

  • Heebner, J.E. and R.W. Boyd. JOSA B 4 722, 2002.

    Google Scholar 

  • Jiang S. and M. Dagenais. Appl. Phys. Lett. 62 2757, 1993.

    Google Scholar 

  • Lenz, G., B.J. Eggleton, C.K. Madsen and R.E. Slusher. IEEE J. of Quantum Electron. 37, 525, 2001.

    Google Scholar 

  • Madsen, C.K. and G. Lenz. IEEE Photon. Technol. Lett. 10, 994, 1998.

    Google Scholar 

  • Martijn de Sterke, C. and J.E. Sipe. Phys. Rev. A 42 550, 1990.

    Google Scholar 

  • Melloni, A., M. Chinello and M. Martinelli. IEEE Photon. Technol. Lett. 12 42, 2000.

    Google Scholar 

  • Melloni, A., F. Morichetti and M. Martinelli. In: Proceeding of the 10th International Workshop on Optical Waveguide Theory and Numerical Modelling, Nottingham, UK, 2002, p. 33.

  • Melloni, A. and M. Martinelli. J. Lightwave Technol. 20 296, 2002.

    Google Scholar 

  • Mookherjea, S., D.S. Cohen and A. Yariv. Opt. Lett. 27 933, 2002.

    Google Scholar 

  • Pierce, J.R. Travelling-Wave Tubes, D. van Nostrand Company, Inc., Princeton, NJ, 1950.

    Google Scholar 

  • Radic, S., N. George and G.P. Agrawal. J. Opt. Soc. Am. B 12 671, 1995.

    Google Scholar 

  • Shaw, N., W.J. Stewart, J. Heaton and D.R. Wight. Electron. Lett. 35 1557, 1999.

    Google Scholar 

  • Soljacic, M., S.G. Johnson, S. Fan, M. Ibanescu, E. Ippen and J.D. Joannopoulos. J. Opt. Soc. Am. B 19 2052, 2002.

    Google Scholar 

  • Taylor, H.F. J. Lightwave Technol. 17, 1875, 1999.

    Google Scholar 

  • Taylor, H.F. J. Lightwave Technol. 19 866, 2001.

    Google Scholar 

  • Troup, G. Masers: Microwave Amplification by Stimulated Emission of Radiation, Hethuen Co, London, 1950.

    Google Scholar 

  • Yeh, P., A. Yariv and C-S. Hong. J. Opt. Soc. Am. 67 423, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Melloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melloni, A., Morichetti, F. & Martinelli, M. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Optical and Quantum Electronics 35, 365–379 (2003). https://doi.org/10.1023/A:1022957319379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022957319379

Navigation