Skip to main content
Log in

In Vitro Reconstitution of Neurotransmitter Release

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The vesicular hypothesis has stimulated fruitful investigations on many secreting systems. In the case of rapid synaptic transmission, however, the hypothesis has been found difficult to reconcile with a number of well established observations. Brief impulses of transmitter molecules (quanta) are emitted from nerve terminals at the arrival of an action potential by a mechanism which is under the control of multiple regulations. It is therefore not surprising that quantal release could be disrupted by experimental manipulation of a variety of cellular processes, such as a) transmitter uptake, synthesis, or transport, b) energy supply, c) calcium entry, sequestration and extrusion, d) exo- or endocytosis, e) expression of vesicular and plasmalemmal proteins, f) modulatory systems and second messengers, g) cytoskeleton integrity, etc. Hence, the approaches by “ablation strategy” do not provide unequivocal information on the final step of the release process since there are so many ways to stop the release. We propose an alternate approach: the “reconstitution strategy”. To this end, we developed several preparations for determining the minimal system supporting Ca2+-dependent transmitter release. Release was reconstituted in proteoliposomes, Xenopus oocytes and transfected cell lines. Using these systems, it appears that a presynaptic plasmalemmal proteolipid, that we called mediatophore should be considered as a key molecule for the generation of transmitter quanta in natural synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Del Castillo, J., and B. Katz. 1957. La base “quantale” de la transmission neuromusculaire. In Microphysiologie comparée des éléments excitables. Paris CNRS, editor. 245–258.

  2. Israël, M., J. Gautron, and B. Lesbats. 1968. Isolement des vésicules synaptiques de l'organe électrique de la Torpille et localisation de l'acétylcholine à leur niveau. C.R. Acad. Sci. Paris 266:273–275.

    Google Scholar 

  3. Israël, M., J. Gautron, and B. Lesbats. 1970. Fractionnement de l'organe électrique de la Torpille: localisation subcellulaire de l'acétylcholine. J. Neurochem. 17:1441–1450.

    Google Scholar 

  4. Heuser, J. E., T. S. Reese, M. J. Dennis, Y. Jan, L. Jan, and L. Evans. 1979. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell. Biol. 81:275–300.

    Google Scholar 

  5. Torri-Tarelli, F., F. Grohovaz, R. Fesce, and B. Ceccarelli. 1985. Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine. J. Cell. Biol. 101:1386–1399.

    Google Scholar 

  6. Schiavo, G., F. Benfenati, B. Poulain, O. Rossetto, P. Polverino de Laureto, B. R. DasGupta, and C. Montecucco. 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835.

    Google Scholar 

  7. Blasi, J., E. R. Chapman, E. Link, T. Binz, S. Yamasaki, P. De Camilli, T. C. Südhof, H. Nieman, and R. Jahn. 1993. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP 25. Nature 365:160–163.

    Google Scholar 

  8. Kuffler, S. W., and D. Yoshikami. 1975. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. Lond. 251:465–482.

    Google Scholar 

  9. Dunant, Y., and D. Muller. 1986. Quantal release of acetylcholine evoked by focal depolarization at the Torpedo nerve-electroplaque junction. J. Physiol. Lond. 379:461–478.

    Google Scholar 

  10. Dunant, Y., and M. Israël. 1993. Ultrastructure and biophysics of acetylcholine release: central role of the mediatophore. J. Physiol. Paris 87:179–192.

    Google Scholar 

  11. Ceccarelli, B., and W. P. Hurlbut. 1980. Vesicle hypothesis of the release of quanta of acetylcholine. Physiol. Rev. 60:396–441.

    Google Scholar 

  12. Alvarez de Toledo, G., R. Fernandez Chacon, and J. M. Fernandez. 1993. Release of secretory products during transient vesicle fusion. Nature 363:554–558.

    Google Scholar 

  13. Neher, E. 1993. Secretion without full fusion. Nature 363:497–498.

    Google Scholar 

  14. Lindau, M., and W. Almers. 1997. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell. Biol. 7:509–517.

    Google Scholar 

  15. Rahamimoff, R., and J. M. Fernandez. 1997. Pre-and postfusion regulation of transmitter release. Neuron 18:17–27.

    Google Scholar 

  16. Muller, D., L. M. Garcia-Segura, A. Parducz, and Y. Dunant. 1987. Brief occurrence of a population of large intramembrane particles in the presynaptic membrane during transmission of a nerve impulse. Proc. Natl. Acad. Sci. (USA) 84:590–594.

    Google Scholar 

  17. Parducz, A., F. Loctin, E. Babel-Guérin, and Y. Dunant. 1994. Exo-endocycytotic images following tetanic stimulation at a cholinergic synapse. A role in calcium extrusion? Neuroscience 62:93–103.

    Google Scholar 

  18. Torri Tarelli, F., M. Bossi, R. Fesce, P. Greengard, and F. Valtorta. 1992. Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Neuron 9:1143–1153.

    Google Scholar 

  19. Heuser, J. E., and T. S. Reese. 1981. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell. Biol. 88:564–580.

    Google Scholar 

  20. Garcia-Segura, L. M., D. Muller, and Y. Dunant. 1986. Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve-electroplaque junction. Neuroscience 19:63–79.

    Google Scholar 

  21. Betz, W. J., and G. S. Bewick. 1993. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J. Physiol. Lond. 460:287–309.

    Google Scholar 

  22. Henkel, A. W., and W. J. Betz. 1995. Staurosporine blocks evoked release of FM1–43 but not acetylcholine from frog motor terminals. J. Neurosc. 15:8246–8258.

    Google Scholar 

  23. Parducz, A., P. Corrèges, P. Sors, and Y. Dunant. 1997. Zinc blocks acetylcholine release but not vesicle fusion at the Torpedo nerve-electroplate junction. Eur. J. Neurosci. 9:732–738.

    Google Scholar 

  24. Israël, M., Y. Dunant, and R. Manaranche. 1979. The present status of the vesicular hypothesis. Prog. Neurobiol. 13:237–275.

    Google Scholar 

  25. Tauc, L. 1982. Non-vesicular release of neurotransmitter. Physiol. Rev. 62:857–893.

    Google Scholar 

  26. Dunant, Y. 1986. On the mechanism of acetylcholine release. Prog. Neurobiol. 26:55–92.

    Google Scholar 

  27. Dunant, Y., and M. Israël. 1985. The release of acetylcholine. Scientific American 252:58–66.

    Google Scholar 

  28. De Robertis, E., and A. V. Ferreira. 1957. Submicroscopic changes of the nerve endings in the adrenal medulla after stimulation of the splanchnic nerve. J. Biophys. Biochem. Cytol. 3:611–614.

    Google Scholar 

  29. Nicolescu, P., M. Dolivo, C. Rouiller, and C. Foroglou-Kerameus. 1966. The effect of deprivation of glucose on the ultrastructure and function of the superior cervical ganglion of the rat in vitro. J. Cell Biol. 29:267–285.

    Google Scholar 

  30. Longenecker, H. E., W. P. Hurlbut, A. Mauro, and A. W. Clark. 1970. Effects of black widow spider venom on the frog neuromuscular junction. Nature 225:702–703.

    Google Scholar 

  31. Colasante, C., F. A. Meunier, A. S. Kreger, and J. Molgo. 1996. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynillysin, a protein toxin isolated from stone fish (Synanceia trachynis) venom. Eur. J. Neurosci. 8:2149–2156.

    Google Scholar 

  32. Dunant, Y., F. Loctin, J. Marsal, D. Muller, A. Parducz, and X. Rabasseda. 1988. Energy metabolism and quantal acetylcholine release. Effects of botulinum toxin, fluorodinitrobenzene and diamide in the Torpedo electric organ. J. Neurochem. 50:431–439.

    Google Scholar 

  33. Kriebel, M. E., F. Llados, and D. R. Matteson. 1976. Spontaneous subminiature end-plate potentials in mouse diaphragm muscle: evidence for synchronous release. J. Physiol. Lond. 262:553–581.

    Google Scholar 

  34. Turkanis, S. A. 1973. Some effects of vinblastine and colchicine on neuromuscular transmission. Brain Res. 54:324–329.

    Google Scholar 

  35. Mochida, S. 1995. Role of myosin in neurotransmitter release: functional studies at synapses formed in culture. J. Physiol. Paris. 89:83–94.

    Google Scholar 

  36. Elmqvist, D., and D. M. J. Quastel. 1965. Presynaptic action of hemicholinium at the neuromuscular junction. J. Physiol. Lond. 177:463–482.

    Google Scholar 

  37. Birks, R. I., and F. C. MacIntosh. 1961. Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39:787–827.

    Google Scholar 

  38. MacIntosh, F. C., and B. Collier. 1976. Neurochemistry of cholinergic terminals. In Handbook of Experimental Pharmacology. E. Zaimis, editor. Springer Verlag, Berlin. 99–228.

    Google Scholar 

  39. Tucek, S. 1978. Acetylcholine synthesis in neurons. S. Tucek, editor. 1–279.

  40. Brittain, R. T., G. P. Levy, and M. B. Tyers. 1997. The neuromuscular blocking action of 2-(4-phenyl-piperidino)cyclohexanol (AH5 183). Eur. J. Pharmacol. 8:93–99.

    Google Scholar 

  41. Katz, B., and R. B. Miledi. 1969. Tetrodotoxin-resistant electric activity in presynaptic terminals. J. Physiol. Lond. 203:459–487.

    Google Scholar 

  42. Molgo, J., M. Lemeignan, and P. Lechat. 1977. Effects of 4-aminopyridine at the frog neuromuscular junction. J. Pharmacol. exp. Ther. 203:653–663.

    Google Scholar 

  43. Muller, D. 1986. Potentiation by 4-aminopyridine of quantal acetylcholine release at the Torpedo nerve electroplaque junction. J. Physiol. Lond. 379:479–493.

    Google Scholar 

  44. Robitaille, R., and M. P. Charlton. 1992. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J. Neurosci. 12:297–305.

    Google Scholar 

  45. Harvey, A. M., and F. C. MacIntosh. 1940. Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. Lond. 97:408–416.

    Google Scholar 

  46. Katz, B. 1969. The release of neural transmitter substances. University Press: Liverpool 60P.

    Google Scholar 

  47. Eshkind, L. G., and R. E. Leube. 1995. Mice lacking synaptophysin reproduce and form typical synaptic vesicles. Cell Tissue Res. 282:423–433.

    Google Scholar 

  48. McMahon, H. T., V. Y. Bolshakov, R. Janz, R. E. Hammer, S. A. Siegelbaum, and T. C. Sudhof. 1996. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc. Natl. Acad. Sci. U.S.A. 93:4760–4764.

    Google Scholar 

  49. Sweeney, S. T., K. Broadie, J. Keane, H. Niemann, and C. J. O'Kane. 1995. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351.

    Google Scholar 

  50. Sollner, T., and J. E. Rothman. 1994. Neurotransmission: harnessing fusion machinery at the synapse. Trends Neurosci. 17:344–348.

    Google Scholar 

  51. Harris, A. J., and R. B. Miledi. 1971. The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. Lond. 217:497–515.

    Google Scholar 

  52. Thesleff, S., J. Molgo, and H. Lundh. 1983. Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous transmitter release at the rat neuromuscular junction. Brain Res. 264:89–97.

    Google Scholar 

  53. Gansel, M., R. Penner, and F. Dreyer. 1987. Distinct sites of action of clostridial neurotoxins revealed by double-poisoning of mouse motor nerve terminals. Pflügers Arch. 409:533–539.

    Google Scholar 

  54. Molgo, J., J. X. Comella, D. Angaut Petit, M. Pecot Dechavassine, N. Tabti, L. Faille, A. Mallart, and S. Thesleff. 1990. Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J. Physiol. Paris 84:152–166.

    Google Scholar 

  55. DiAntonio, A., K. D. Parfitt, and T. L. Schwarz. 1993. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 73:1281–1290.

    Google Scholar 

  56. Bommert, K., M. P. Charlton, W. M. DeBello, G. J. Chin, H. Betz, and G. J. Augustine. 1993. Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363:163–165.

    Google Scholar 

  57. Nonet, M. L., K. Grundahl, B. J. Meyer, and J. B. Rand. 1993. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73:1291–1305.

    Google Scholar 

  58. Littleton, J. T., and H. J. Bellen. 1995. Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca(2+)-dependent manner. Trends. Neurosci. 18:177–183.

    Google Scholar 

  59. Broadie, K., A. Prokop, H. J. Bellen, C. J. O'Kane, K. L. Schulze, and S. T. Sweeney. 1995. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15:663–673.

    Google Scholar 

  60. Stevens, C. F. 1993. Quantal release of neurotransmitter and long-term potentiation. Neuron 10:55–63.

    Google Scholar 

  61. Kriebel, M. E., and C. E. Gross. 1974. Multimodal distribution of frog miniature endplate potentials in adult, denervated and tadpole leg muscle. J. Gen. Physiol. 64:85–103.

    Google Scholar 

  62. Muller, D., and Y. Dunant. 1987. Spontaneous quantal and subquantal transmitter release at the Torpedo nerve-electroplaque junction. Neuroscience 20:911–921.

    Google Scholar 

  63. Girod, R., P. Corrèges, J. Jacquet, and Y. Dunant. 1993. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo. J. Physiol. Lond. 471:129–157.

    Google Scholar 

  64. Morel, N., M. Israël, R. Manaranche, and P. Mastour-Frachon. 1977. Isolation of pure cholinergic nerve endings from Torpedo electric organ. Evaluation of their metabolic properties. J. Cell Biol. 75:43–55.

    Google Scholar 

  65. Girod, R., L. Eder-Colli, J. Medilanski, Y. Dunant, N. Tabti, and M. M. Poo. 1992. Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated from the Torpedo electric organ. J. Physiol. Lond. 450:325–340.

    Google Scholar 

  66. Israël, M., B. Lesbats, and R. Manaranche. 1981. ACh release from osmotically shocked synaptosomes refilled with transmitter. Nature 294:474–475.

    Google Scholar 

  67. Israël, M., B. Lesbats, N. Morel, R. Manaranche, and G. Le Gal la Salle. 1988. Is the acetylcholine releasing protein mediatophore present in rat brain? FEBS Lett. 233:421–426.

    Google Scholar 

  68. Meyer, E. M., and J. R. Cooper. 1983. High affinity choline uptake and calcium-dependent acetylcholine release in proteoliposomes derived from rat cortical synaptosomes. J. Neurosci. 3:987–994.

    Google Scholar 

  69. Israël, M., B. Lesbats, M. Sbia, and N. Morel. 1990. Acetylcholine translocating protein: mediatophore at rat neuromuscular synapses. J. Neurochem. 55:1758–1762.

    Google Scholar 

  70. Israël, M., B. Lesbats, N. Morel, R. Manaranche, T. Gulik-Krzywicki, and J. Dedieu. 1984. Reconstitution of a functional synaptosomal membrane possessing the protein constituents involved in acetylcholine translocation. Proc. Natl. Acad. Sci. USA. 81:277–281.

    Google Scholar 

  71. Israël, M., N. Morel, B. Lesbats, S. Birman, and R. Manaranche. 1986. Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc. Natl. Acad. Sci. USA 83:9226–9230.

    Google Scholar 

  72. Birman, S., M. Israël, B. Lesbats, and N. Morel. 1986. Solubilization and partial purification of a presynaptic membrane protein ensuring calcium-dependent acetylcholine release from proteoliposomes. J. Neurochem. 47:433–444.

    Google Scholar 

  73. Birman, S., F. M. Meunier, B. Lesbats, J. P. LeCaer, J. Rossier, and M. Israël. 1990. A 15 kD proteolipid found in mediatophore preparations from Torpedo presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Lett. 261:303–306.

    Google Scholar 

  74. Nelson, N. 1992. Organellar proton-ATPases. Curr. Opin. Cell. Biol. 4:654–660.

    Google Scholar 

  75. Finbow, M. E., J. D. Pitts, D. J. Goldstein, R. Schlegel, and B. C. Findlay. 1991. The E5 oncoprotein target: A 16-kDa channel-forming protein with diverse functions. Molec. Carcinog. 4:441–444.

    Google Scholar 

  76. Finbow, M. E., M. Harrison, and P. Jones. 1995. Ductin—a proton pump component, a gap junction channel and a neurotransmitter release channel. Bioessays. 17:247–255.

    Google Scholar 

  77. Brochier, G., M. Israël, and B. Lesbats. 1993. Immunolabelling of the presynaptic membrane of Torpedo electric organ nerve terminals with an antiserum towards the acetylcholine releasing protein mediatophore. Biol. Cell 78:145–154.

    Google Scholar 

  78. Israël, M., F. M. Meunier, N. Morel, and B. Lesbats. 1987. Calcium-induced desensitization of acetylcholine release from synaptosomes or proteoliposomes equipped with mediatophore, a presynaptic membrane protein. J. Neurochem. 49:975–982.

    Google Scholar 

  79. Cavalli, A., L. Eder-Colli, Y. Dunant, F. Loctin, and N. Morel. 1991. Release of acetylcholine from Xenopus oocytes injected with nRNAs from cholinergic neurons. EMBO J. 10:1671–1675.

    Google Scholar 

  80. Morot-Gaudry-Talarmain, Y., M.-F. Diebler, M. Robba, J.-C. Lancelot, B. Lesbats, and M. Israël. 1989. Effect of cetiedil analogs on acetylcholine and choline fluxes in synaptosomes and vesicles. Eur. J. Pharmacol. 166:427–433.

    Google Scholar 

  81. Dunant, Y., F. Loctin, J.-P. Vallée, A. Parducz, B. Lesbats, and M. Israël. 1996. Activation and desensitization of acetylcholine release by zinc in Torpedo nerve terminals. Pflügers Arch. 432:853–858.

    Google Scholar 

  82. Brochier, G., T. Gulik-Krzywicki, B. Lesbats, J. Dedieu, and M. Israël. 1992. Calcium-induced acetylcholine release and intramembrane particle occurrence in proteoliposomes equipped with mediatophore. Biol. Cell 74:225–230.

    Google Scholar 

  83. Israël, M., R. Manaranche, N. Morel, J. Dedieu, T. Gulik-Krzywicki, and B. Lesbats. 1981. Redistribution of intramembrane particles related to acetylcholine release by cholinergic synaptosomes. J. Ultrastruct. Res. 75:162–178.

    Google Scholar 

  84. Gundersen, C. B., D. J. Jenden, and R. B. Miledi. 1985. Choline acetyltransferase and acetylcholine in Xenopus oocytes injected with mRNA from the electric lobe of Torpedo. Proc. Natl. Acad. Sci. (USA) 82:608–611.

    Google Scholar 

  85. Gundersen, C. B., R. B. Miledi, and I. Parker. 1984. Slowly inactivating potassium channels induced in Xenopus oocytes by messenger ribonucleic acid from Torpedo brain. J. Physiol. Lond. 353:231–248.

    Google Scholar 

  86. Cavalli, A., Y. Dunant, C. Leroy, F. M. Meunier, N. Morel, and M. Israël. 1993. Antisense probes against mediatophore block transmitter release in oocytes primed with neuronal mRNAs. Eur. J. Neurosci. 5:1539–1544.

    Google Scholar 

  87. Alder, J., B. Lu, F. Valtorta, P. Greengard, and M. M. Poo. 1992. Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: Requirement for synaptophysin. Science 257:657–661.

    Google Scholar 

  88. Leroy, C. and F. M. Meunier. 1995. Differential targeting to the plasma membrane of the Torpedo 15-kDa proteolipid expressed in oocytes. J. Neurochem. 65:1789–1797.

    Google Scholar 

  89. Evers, J., M. Laser, Y. Sun, Z. Xie, and M. M. Poo. 1989. Studies of nerve-muscle interactions in Xenopus cell culture: Analysis of early synaptic currents. J. Neurosci. 9:1523–1539.

    Google Scholar 

  90. Falk-Vairant, J., Y. Dunant, and M. Israël. 1994. Quantal acetylcholine release in reconstituted systems. J. Neurochem. 63:S90.

    Google Scholar 

  91. Falk-Vairant, J., P. Corrèges, L. Eder-Colli, N. Salem, E. Roulet, A. Bloc, F. Meunier, B. Lesbats, F. Loctin, M. Synguelakis, M. Israël, and Y. Dunant. 1996. Quantal acetylcholine release induced by mediatophore transfection. Proc. Natl. Acad. Sci. USA 93:5203–5207.

    Google Scholar 

  92. Israël, M., B. Lesbats, M. Synguelakis, and A. Joliot. 1994. Acetylcholine accumulation and release by hybrid NG108–15, glioma and neuroblastoma cells—Role of a 16 kDa membrane protein in release. Neurochem. Int. 25:103–109.

    Google Scholar 

  93. Falk-Vairant, J., M. Israël, J. Bruner, J. Stinnakre, F. M. Meunier, P. Gaultier, F. A. Meunier, B. Lesbats, M. Synguelakis, P. Corrèges, and Y. Dunant. 1996. Evoked transmitter release from fibroblasts loaded with acetylcholine, enhancement by cAMP. Neuroscience 75:353–360.

    Google Scholar 

  94. Varoqui, H., M. Diebler, F. Meunier, J. B. Rand, T. B. Usdin, T. I. Bonner, L. E. Eiden, and J. D. Erickson. 1994. Cloning and expression of the vesamicol binding protein from the marine ray Torpedo. Homology with the putative acetylcholine transporter UNC-17 from Caenorhabditis elegans. FEBS Lett. 342:97–102.

    Google Scholar 

  95. Zhong, Z. G., H. Misawa, S. Furuya, Y. Kimura, M. Noda, S. Yokoyama, and H. Higashida. 1995. Overexpression of choline acetyltransferase reconstitutes discrete acetylcholine release in some but not all synapse formation-defective neuroblastoma cells. J. Physiol. Paris 89:137–145.

    Google Scholar 

  96. Erickson, J. D., H. Varoqui, M. K. Schafer, W. Modi, M. F. Diebler, E. Weihe, J. Rand, L. E. Eiden, T. I. Bonner, and T. B. Usdin. 1994. Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J. Biol. Chem. 269:21929–21932.

    Google Scholar 

  97. Berrard, S., H. Varoqui, R. Cervini, M. Israël, J. Mallet, and M.-F. Diebler. 1995. Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. J. Neurochem. 65:939–942.

    Google Scholar 

  98. Falk-Vairant, J., P. Corrèges, L. Eder-Colli, N. Salem, F. Meunier, B. Lesbats, F. Loctin, M. Synguelakis, M. Israël, and Y. Dunant. 1996. Evoked acetylcholine release expressed by transfection of mediatophore cDNA. J. Neurochem. 66:1322–1325.

    Google Scholar 

  99. Falk-Vairant, J., F. M. Meunier, B. Lesbats, P. Corrèges, L. Eder-Colli, N. Salem, M. Synguelakis, Y. Dunant, and M. Israël. 1996. Cell lines expressing an acetylcholine release mechanism, correction of a release-defficient cell by mediatophore transfection. J. Neurosc. Res. 45:195–201.

    Google Scholar 

  100. Bloc, A., E. Roulet, F. Loctin, and Y. Dunant. 1997. Acetylcholine release from mouse neuroblastoma cells co-transfected with mediatophore and choline acetyltransferase cDNAs. NATO ASI Series 100:175–182.

    Google Scholar 

  101. Galli, T., P. S. McPherson, and P. De Camilli. 1996. The Vo sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive, complex. J. Biol. Chem. 271:2193–2198.

    Google Scholar 

  102. Shiff, G., Synguelakis, M. and Morel, N. 1996. Association of syntaxin with SNAP 25 and VAMP (synaptobrevin) in Torpedo synaptosomes. Neurochem. Int. 29:659–667.

    Google Scholar 

  103. Israël, M., and B. Lesbats. 1981. Continuous determination by a chemiluminescent method of acetylcholine release and compart-mentation in Torpedo electric organ synaptosomes. J. Neurochem. 37:1475–1483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunant, Y., Israël, M. In Vitro Reconstitution of Neurotransmitter Release. Neurochem Res 23, 709–718 (1998). https://doi.org/10.1023/A:1022451224748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022451224748

Navigation