Skip to main content
Log in

Immunocytochemical Localization of Synaptic Proteins at Vesicular Organelles in PC12 Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The distribution of the three synaptic vesicle proteins SV2, synaptophysin and synaptotagmin, and of SNAP-25, a component of the docking and fusion complex, was investigated in PC12 cells by immunocytochemistry. Colloidal gold particle-bound secondary antibodies and a preembedding protocol were applied. Granules were labeled for SV2 and synaptotagmin but not for synaptophysin. Electron-lucent vesicles were labeled most intensively for synaptophysin but also for SV2 and to a lesser extent for synaptotagmin. The t-SNARE SNAP-25 was found at the plasma membrane but also at the surface of granules. Labeling of Golgi vesicles was observed for all antigens investigated. Also components of the endosomal pathway such as multivesicular bodies and multilamellar bodies were occasionally marked. The results suggest that the three membrane-integral synaptic vesicle proteins can have a differential distribution between electron-lucent vesicles (of which PC12 cells may possess more than one type) and granules. The membrane compartment of granules appears not to be an immediate precursor of that of electron-lucent vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cutler, D. F., and Cramer, L. P. 1990. Sorting during transport to the surface of PC12 Cells: Divergence of synaptic vesicle and secretory granule proteins. J. Cell Biol. 110:721–730.

    Google Scholar 

  2. Schweitzer, E. S. 1993. Regulated and constitutive secretion of distinct molecular forms of acetylcholinesterase from PC12 cells. J. Cell Sci. 106:731–740.

    Google Scholar 

  3. Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromcytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.

    Google Scholar 

  4. Lah, J. J., and Burry, R. W. 1993. Neuronotypic differentiation results in reduced levels and altered distribution of synaptophysin in PC12-cells. J. Neurochem. 60:503–512.

    Google Scholar 

  5. Liu, L., Xu, W., Harrington, K. A., and Emson, P. C. 1994. The molecular cloning and expression of a human synaptic vesicle amine transporter that suppresses MPP(+) toxicity. Mol. Brain Res. 25:90–96.

    Google Scholar 

  6. Bajjalieh, S. M., Peterson, K., Shinghal, R., and Scheller, R. H. 1992. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257:1271–1273.

    Google Scholar 

  7. Feany, M. B., Lee, S., Edwards, R. H., and Buckley, K. M. 1992. The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70:861–867.

    Google Scholar 

  8. Vetter, J., and Betz, H. 1989. Expression of synaptophysin in the rat pheochromocytoma cell line PC12. Exp. Cell Res. 184:360–366.

    Google Scholar 

  9. Thomas, L., Hartung, K., Langosch, D., Rehm, H., Bamberg, E., Franke, W. W., and Betz, H. 1988. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242:1050–1053.

    Google Scholar 

  10. Brose, N., Petrenko, A. G., Südhof, T. C., and Jahn, R. 1992. Synaptotagmin—A Calcium Sensor on the Synaptic Vesicle Surface. Science 256:1021–1025.

    Google Scholar 

  11. Chapman, E. R., An, S., Barton, N., and Jahn, R. 1994. SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269: 27427–27432.

    Google Scholar 

  12. Bark, I. C., Hahn, K. M., Ryabinin, A. E., and Wilson, M. C. 1995. Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proc. Natl. Acad. Sci. USA 92:1510–1514.

    Google Scholar 

  13. Winkler, H., and Fischer-Colbrie, R. 1990. Common membrane proteins of chromaffin granules, endocrine and synaptic vesicles: properties, tissue distribution, membrane topography and regulation of synthesis. Neurochem. Int. 17:245–262.

    Google Scholar 

  14. Annaert, W. G., Llona, I., Backer, A. C., Jacob, W. A., and De Potter, W. P. 1993. Catecholamines are present in a synaptic-like microvesicle-enriched fraction from bovine adrenal medulla. J. Neurochem. 60:1746–1754.

    Google Scholar 

  15. Annaert, W. G., Llona, I., Deridder, E., Weyns, A., Quatacker, J., and De Potter, W. P. 1995. Subcellular localization of synaptophysin in noradrenergic nerve terminals: A biochemical and morphological study. Synapse 21:65–76.

    Google Scholar 

  16. Schmidle, T., Weiler, R., Desnos, C., Scherman, D., Fischer-Colbrie, R., Floor, E., and Winkler, H. 1991. Synaptin/synaptophysin, p65 and SV2—Their Presence in adrenal chromaffin granules and sympathetic large dense core vesicles. Biochim. Biophys. Acta 1060:251–256.

    Google Scholar 

  17. Huttner, W. B., Ohashi, M., Kehlenbach, R. H., Barr, F. A., Bauerfeind, R., Braunling, O., Corbeil, D., Hannah, M., Pasolli, H. A., Schmidt, A., Schmidt, A. A., Thiele, C., Wang, Y., Kromer, A., and Gerdes, H. H. 1995. Biogenesis of neurosecretory vesicles. Cold Spring Harb. Symp. Quant. Biol. 60:315–327.

    Google Scholar 

  18. Chow, R. H., Klingauf, J., Heinemann, C., Zucker, R. S., and Neher, E. 1996. Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron 16:369–376.

    Google Scholar 

  19. Vitale, M. L., Seward, E. P., and Trifaró, J. M. 1995. Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14: 353–363.

    Google Scholar 

  20. De Camilli, P., Emr, S. D., McPherson, P. S., and Novick, P. 1996. Phosphoinositides as regulators in membrane traffic. Science 271: 1533–1539.

    Google Scholar 

  21. Vitale, N., Gensse, M., Chasserot-Golaz, S., Aunis, D., and Bader, M. F. 1996. Trimeric G proteins control regulated exocytosis in bovine chromaffin cells: Sequential involvement of Go associated with secretory granules and Gi(3) bound to the plasma membrane. Eur. J. Neurosci. 8:1275–1285.

    Google Scholar 

  22. Bauerfeind, R., Regnier-Vigouroux, A., Flatmark, T., and Huttner, W. B. 1993. Selective Storage of Acetylcholine, But Not Catecholamines, in Neuroendocrine Synaptic-Like Microvesicles of Early Endosomal Origin. Neuron 11:105–121.

    Google Scholar 

  23. Ireland, L. M., Yan, C. H., Nelson, L. M., and Atchison, W. D. 1995. Differential effects of 2,4-dithiobiuret on the synthesis and release of acetylcholine and dopamine from rat pheochromocytoma (PC12) cells. J. Pharmacol. Exp. Ther. 275:1453–1462.

    Google Scholar 

  24. Tao-Cheng, J. H., Dosemeci, A., Bressler, J. P., Brightman, M. W., and Simpson, D. L. 1995. Characterization of synaptic vesicles and related neuronal features in nerve growth factor and ras oncogene differentiated PC12 cells. J. Neurosci. Res. 42:323–334.

    Google Scholar 

  25. Weihe, E., Tao-Cheng, J. H., Schäfer, M. K. H., Erickson, J. D., and Eiden, L. E. 1996. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc. Natl. Acad. Sci. USA 93:3547–3552.

    Google Scholar 

  26. Johnston, P. A., Cameron, P. L., Stukenbrok, H., Jahn, R., De Camilli, P., and Südhof, T. C. 1989. Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. EMBO J. 8:2863–2872.

    Google Scholar 

  27. Clift-O'Grady, L., Linstedt, A. D., Lowe, A. W., Grote, E., and Kelly, R. B. 1990. Biogenesis of synaptic vesicle-like structures in a pheochromocytoma cell line PC-12. J. Cell Biol. 110:1693–1703.

    Google Scholar 

  28. Kelly, R. B. 1991. Secretory granule and synaptic vesicle formation. Curr. Opinion Cell Biol. 3:654–660.

    Google Scholar 

  29. Lah, J. J., and Burry, R. W. 1993. Synaptophysin has a selective distribution in early endosomes of PC12-cells. J. Neurocytol. 22: 92–101.

    Google Scholar 

  30. Heilbronn, A., Krapohl, A., and Zimmermann, H. 1995. 5′-Nucleotidase in PC12 cells as revealed by immunocytochemistry. Cell Tissue Res. 280:123–131.

    Google Scholar 

  31. Janetzko, A., Zimmermann, H., and Volknandt, W. 1989. Intraneuronal distribution of a synaptic vesicle membrane protein: antibody binding sites at axonal membrane compartments and trans-Golgi network and accumulation at nodes of Ranvier. Neuroscience 32:65–77.

    Google Scholar 

  32. Spector, T. 1978. Refinement of the Coomassie Blue method for protein quantitation. Anal. Biochem. 86:142–146.

    Google Scholar 

  33. Buckley, K., and Kelly, R. B. 1985. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell Biol. 100:1284–1294.

    Google Scholar 

  34. Volknandt, W., and Zimmermann, H. 1990. Identical properties of transmembrane synaptic vesicle protein Mr 100,000 in Torpedo and Mr 86,000 in bovine brain. Neurochem. Int. 4:539–547.

    Google Scholar 

  35. Bajjalieh, S. M., Peterson, K., Linial, M., and Scheller, R. H. 1993. Brain contains 2 forms of synaptic vesicle protein-2. Proc. Natl. Acad. Sci. USA 90:2150–2154.

    Google Scholar 

  36. Bajjalieh, S. M., Frantz, G. D., Weimann, J. M., McConnell, S. K., and Scheller, R. H. 1994. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J. Neurosci. 14:5223–5235.

    Google Scholar 

  37. Südhof, T. C. 1995. The synaptic vesicle cycle: A cascade of protein-protein interactions. Nature 375:645–653.

    Google Scholar 

  38. Regnier-Vigouroux, A., and Huttner, W. B. 1993. Biogenesis of small synaptic vesicles and synaptic-like microvesicles. Neurochem. Res. 18:59–64.

    Google Scholar 

  39. Mundigl, O., and De Camilli, P. 1994. Formation of synaptic vesicles. Curr. Opin. Cell Biol 6:561–567.

    Google Scholar 

  40. Floor, E., Leventhal, P. S., and Schaeffer, S. F. 1990. Partial purification and characterization of the vacuolar H+-ATPase of mammalian synaptic vesicles. J. Neurochem. 55:1663–1670.

    Google Scholar 

  41. Tixier-Vidal, A., Faivre-Bauman, A., Picart, R., and Wiedenmann, B. 1988. Immunoelectron microscopic localization of synaptophysin in a Golgi subcompartment of developing hypothalamic neurons. Neuroscience 26:847–861.

    Google Scholar 

  42. Gajkowska, B., and Viron, A. 1992. Selective localization of synaptophysin in hypothalamo-hypophyseal system of rat by use of immunogold technique. Neuroendocrinol. Lett. 14:147–152.

    Google Scholar 

  43. Dalström, A. B., and Li, J.-Y. 1994. Fast and slow axonal transport-different methodological approaches give complementary information: Contributions of the stop-flow/crush approach. Neurochem. Res. 19:1413–1419.

    Google Scholar 

  44. Li, J.-Y., Jahn, R., and Dahlström, A. 1994. Synaptotagmin I is present mainly in autonomic and sensory neurons of the rat peripheral nervous system. Neuroscience 63:837–850.

    Google Scholar 

  45. Li, J.-Y. 1996. Rabphilin-3A is transported with fast anterograde axonal transport and associated with synaptic vesicles. Synapse 23:79–88.

    Google Scholar 

  46. Li, J.-Y., Jahn, R., and Dahlström, A. 1995. Rab3a, a small GTP-binding protein, undergoes fast anterograde transport but not retrograde transport in neurons. Eur. J. Cell Biol. 67:297–307.

    Google Scholar 

  47. Li, J.-Y., Jahn, R., and Dahlström, A. 1996. Axonal transport and targeting of the t-SNAREs SNAP-25 and syntaxin 1 in the peripheral nervous system. Eur. J. Cell Biol. 70:12–22.

    Google Scholar 

  48. Cameron, P. L., Südhof, T. C., Jahn, R., and De Camilli, P. 1991. Colocalization of synaptophysin with transferrin receptors—Implications for synaptic vesicle biogenesis. J. Cell Biol. 115:151–164.

    Google Scholar 

  49. Wiedenmann, B., and Huttner, W. B. 1989. Synaptophysin and chromogranins/secretogranins—widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virch. Arch. B 58:95–121.

    Google Scholar 

  50. Alder, J., Xie, Z. P., Valtorta, F., Greengard, P., and Poo, M. M. 1992. Antibodies to synaptophysin interfere with transmitter secretion at neuromuscular synapses. Neuron 9:759–768.

    Google Scholar 

  51. Eshkind, L. G., and Leube, R. E. 1995. Mice lacking synaptophysin reproduce and form typical synaptic vesicles. Synapse 282: 423–433.

    Google Scholar 

  52. McMahon, H. T., Bolshakov, V. Y., Janz, R., Hammer, R. E., Siegelbaum, S. A., and Südhof, T. C. 1996. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc. Natl. Acad. Sci. USA 93:4760–4764.

    Google Scholar 

  53. Wiedenmann, B., Rehm, H., Knierim, M., and Becker, C.-M. 1988. Fractionation of synaptophysin-containing vesicles from rat brain and cultured PC12 pheochromocytoma cells. FEBS Lett. 240:71–77.

    Google Scholar 

  54. Blumberg, D., and Schweitzer, E. S. 1992. Vesamicol binding to subcellular membranes that are distinct from catecholaminergic vesicles in PC12 cells. J. Neurochem. 58:801–810.

    Google Scholar 

  55. Navone, F., Jahn, R., Di Gioia, G., Stukenbrok, H., Greengard, P., and De Camilli, P. 1986. Protein p38: An integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol. 103:2511–2527.

    Google Scholar 

  56. Obendorf, D., Schwarzenbrunner, U., Fischer-Colbrie, R., Laslop, A., and Winkler, H. 1988. In adrenal medulla synaptophysin (protein 38) is present in chromaffin granules and in a special vesicle population. J. Neurochem. 51:1573–1580.

    Google Scholar 

  57. Schilling, K., and Gratzl, M. 1988. Quantification of p38/synaptophysin in highly purified adrenal medullary chromaffin vesicles. FEBS Lett. 233:22–24.

    Google Scholar 

  58. Fournier, S., Novas, M. L., and Trifaró, J.-M. 1989. Subcellular distribution of 65,000 calmodulin-binding protein (p65) and synaptophysin (p38) in adrenal medulla. J. Neurochem. 53:1043–1049.

    Google Scholar 

  59. Schwarzenbrunner, U., Schmidle, T., Obendorf, D., Scherman, D., Hook, V., Fischer-Colbrie, R., and Winkler, H. 1990. Sympathetic axons and nerve terminals: The protein composition of small and large dense-core and of a third type of vesicle. Neuroscience 37: 819–827.

    Google Scholar 

  60. Lowe, A. W., Madeddu, L., and Kelly, R. B. 1988. Endocrine secretory granules and neuronal synaptic vesicles have three integral membrane proteins in common. J. Cell Biol. 106:51–59.

    Google Scholar 

  61. Geppert, M., Goda, Y., Hammer, R. E., Li, C., Rosahl, T. W., Stevens, C. F., and Südhof, T. C. 1994. Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse. Cell 79: 717–727.

    Google Scholar 

  62. Bauerfeind, R., Jelinek, R., and Huttner, W. B. 1995. Synaptotagmin I-and II-deficient PC12 cells exhibit calcium-independent, depolarization-induced neurotransmitter release from synaptic-like microvesicles. FEBS Lett. 364:328–334.

    Google Scholar 

  63. Mizuta, M., Inagaki, N., Nemoto, Y., Matsukura, S., Takahashi, M., and Seino, S. 1994. Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. J. Biol. Chem. 269:11675–11678.

    Google Scholar 

  64. Vician, L., Lim, I. K., Ferguson, G., Tocco, G., Baudry, M., and Herschman, H. R. 1995. Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc. Natl. Acad. Sci. USA 92:2164–2168.

    Google Scholar 

  65. Matthew, W. D., Tsavaler, L., and Reichardt, L. F. 1981. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91:257–269.

    Google Scholar 

  66. Fournier, S., and Trifaró, J.-M. 1988. A similar calmodulin-binding protein expressed in chromaffin, synaptic, and neurohypophyseal secretory vesicles. J. Neurochem. 50:27–37.

    Google Scholar 

  67. Veit, M., Sollner, T. H., and Rothman, J. E. 1996. Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett. 385:119–123.

    Google Scholar 

  68. Walch-Solimena, C., Blasi, J., Edelmann, L., Chapman, E.R., von Mollard, G. F., and Jahn, R. 1995. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J. Cell Biol. 128:637–645.

    Google Scholar 

  69. Duc, C., and Catsicas, S. 1995. Ultrastructural localization of SNAP-25 within the rat spinal cord and peripheral nervous system. J. Comp. Neurol. 356:152–163.

    Google Scholar 

  70. Brandstätter, J. H., Wassle, H., Betz, H., and Morgans, C. W. 1996. The plasma membrane protein SNAP-25, but not syntaxin, is present at photoreceptor and bipolar cell synapses in the rat retina. Eur. J. Neurosci. 8:823–828.

    Google Scholar 

  71. Kretzschmar, S., Volknandt, W., and Zimmermann, H. 1996. Colocalization of syntaxin and SNAP-25 with synaptic vesicle proteins: a reevaluation of functional models required? Neurosci. Res. 26:141–148.

    Google Scholar 

  72. Roth, D., and Burgoyne, R. D. 1994. SNAP-25 is present in a SNARE complex in adrenal chromaffin cells. FEBS Lett. 351: 207–210.

    Google Scholar 

  73. Kannan, R., Grant, N. J., Aunis, D., and Langley, K. 1996. SNAP-25 is differentially expressed by noradrenergic and adrenergic chromaffin cells. FEBS Lett. 385:159–164.

    Google Scholar 

  74. Gutiérrez, L. M., Cànaves, J. M., Ferrer Montiel, A. V., Reig, J. A., Montal, M., and Viniegra, S. 1995. A peptide that mimics the carboxy-terminal domain of SNAP-25 blocks Ca2+-dependent exocytosis in chromaffin cells. FEBS Lett. 372:39–43.

    Google Scholar 

  75. Floor, E., and Feist, B. E. 1989. Most synaptic vesicles isolated from rat brain carry three membrane proteins, SV2, synaptophysin, and p65. J. Neurochem. 52:1433–1437.

    Google Scholar 

  76. Thomas-Reetz, A. C., and De Camilli, P. 1994. A role for synaptic vesicles in non-neuronal cells—Clues from pancreatic beta cells and from chromaffin cells. FASEB J. 8:209–216.

    Google Scholar 

  77. Llona, I. 1995. Synaptic like microvesicles: do they participate in regulated exocytosis? Neurochem. Int. 27:219–226.

    Google Scholar 

  78. Leube, R. E., Leimer, U., Grund, C., Franke, W. W., Harth, N., and Wiedenmann, B. 1994. Sorting of synaptophysin into special vesicles in nonneuroendocrine epithelial cells. J. Cell Biol. 127: 1589–1601.

    Google Scholar 

  79. Matteoli, M., Takei, K., Perin, M. S., Südhof, T. C., and De Camilli, P. 1992. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J. Cell Biol. 117:849–861.

    Google Scholar 

  80. Kraszewski, K., Mundigl, O., Daniell, L., Verderio, C., Matteoli, M., and De Camilli, P. 1995. Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with Cy3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J. Neurosci. 15:4328–4342.

    Google Scholar 

  81. Bauerfeind, R., Jelinek, R., Hellwig, A., and Huttner, W. B. 1995. Neurosecretory vesicles can be hybrids of synaptic vesicles and secretory granules. Proc. Natl. Acad. Sci. USA 92:7342–7346.

    Google Scholar 

  82. Zerby, S. E., and Ewing, A. G. 1996. Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells. Brain Res. 712:1–10.

    Google Scholar 

  83. Thureson-Klein, A. K. 1982. Ultrastructural preservation of vesicles in sympathetic nervous tissue. Pages 65–87, in Klein, R. L., Lagercrantz, H., and Zimmermann, H. (eds.), Neurotransmitter Vesicles, Academic Press, London, New York, Paris, Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marxen, M., Maienschein, V., Volknandt, W. et al. Immunocytochemical Localization of Synaptic Proteins at Vesicular Organelles in PC12 Cells. Neurochem Res 22, 941–950 (1997). https://doi.org/10.1023/A:1022414607385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022414607385

Navigation