Skip to main content
Log in

Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca (Hook)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The basis of the novel cream/yellow flower color found in two Sandersonia aurantiaca lines was examined as part of a project to develop new colors for this cut flower crop in New Zealand. The original color, bright orange, is due to the accumulation of the carotenoid pigments zeaxanthin and β-cryptoxanthin. The cream/yellow lines have much lower levels of total carotenoid pigments (17% and 21%) in their tepal tissue compared to the wild type progenitor. Microscopic analysis of epidermal cells showed alteration in the pigment cluster bodies of tepal tissue of the cream/yellow lines compared to the orange wild type. HPLC analysis of the pigments showed that one cream/yellow line (Y-H) produced the same pigment profile as the wild type (zeaxanthin and β-cryptoxanthin). In comparison, the other cream/yellow line (Y-S) produced the carotenoid profile normally found in green vegetative tissue (β-carotene and lutein). Analysis of carotenoid biosynthetic gene expression in Sandersonia indicated that the cream/yellow Y-H line showed expression patterns similar to the wild type, and gene expression in the Y-S line is decreased relative to the wild type and the Y-H line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alba, R., M. Cordonnier-Pratt & L.H. Pratt, 2000. Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol 123: 363-370.

    Article  PubMed  CAS  Google Scholar 

  • Al-Babili, S., J. von Lintig, H. Haugruck & P. Beyer, 1996. A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation. Plant J 9: 601-612.

    Article  PubMed  CAS  Google Scholar 

  • Brundell, D.J. & J.L Reyngoud, 1986. Observations on the development and culture of Sandersonia. Acta Hort 177: 439-447.

    Google Scholar 

  • Church, G.M. & W. Gilbert, 1984. Genomic sequencing. Proc Natl Acad Sci USA 81: 1991-1995.

    Article  PubMed  CAS  Google Scholar 

  • Corona, V., B. Aracri, G. Kosturkova, G.E. Bartley, L. Pitto, L. Giorgetti, P.A. Scolnik & G. Giuliano, 1996. Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J 9: 505-512.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, F.X. & E. Gannt, 1998. Genes and enzymes of carotenoid biosynthesis in plants. Ann Rev Plant Physiol Plant Mol Biol 49: 557-583.

    Article  CAS  Google Scholar 

  • Deruere, J., S. Romer, A. d'Harlingue, R.A. Backhaus, M. Kuntz & B. Camara, 1994. Fibril assembly and carotenoid overaccumulation in chromoplasts: A model for supramolecular lipoprotein structures. Plant Cell 6: 119-133.

    Article  PubMed  CAS  Google Scholar 

  • Eason, J.R. & D. Webster, 1995. Development and senescence of Sandersonia aurantiaca (Hook.) flowers. Sci Hort 63: 113-121.

    Article  Google Scholar 

  • Eason, J.R., J.W. Johnston, L. de Vre, B.K. Sinclair & G.A. King, 2000. Amino acid metabolism in senescing Sandersonia aurantiaca flowers: cloning and characterization of asparagine synthetase and glutamine synthetase cDNAs. Aust J Plant Physiol 27: 389-396.

    CAS  Google Scholar 

  • Emter, O., H. Falk & P. Sitt, 1990. Specific carotenoids and proteins as prerequisites for chromoplast tubule formation. Protoplasma 157: 128-135.

    Article  CAS  Google Scholar 

  • Fraser, P.D., M.R. Truesdale, C.R. Bird, W. Schuch & P.M. Bramley, 1994. Carotenoid biosynthesis during tomato fruit development. Plant Physiol 105: 405-413.

    PubMed  CAS  Google Scholar 

  • Hugueney, P., F. Bouvier, A. Badillo, J. Quennemet, A. d'Harlingue & B. Camara, 1996. Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits. Plant Physiol 111: 619-626.

    Article  PubMed  CAS  Google Scholar 

  • King, G.A. & K.M. Davies, 1992. Identification, cDNA cloning, and analysis of mRNAs having altered expression in tips of harvested Asparagus spears. Plant Physiol 100: 1161-1169.

    Article  Google Scholar 

  • Lewis, D.H., S.J. Bloor & K.E. Schwinn, 1998. Flavonoid and carotenoid pigments in flower tissue of Sandersonia aurantiaca (Hook). Sci Hort 72: 179-192.

    Article  CAS  Google Scholar 

  • Lois, L.M., M. Rodriguez-Conception, F. Gallego, N. Campos & A. Boronat, 2000. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22: 503-513.

    Article  PubMed  CAS  Google Scholar 

  • Morgan E.R., G.K. Burge, J.F. Seelye, J.E. Grant, A.G.F. Warren & D. Brundell, 2001. Wide crosses in the Colchicaceae: Sandersonia aurantiaca (Hook.) × Littonia modesta (Hook). Euphytica 121: 343-348.

    Article  Google Scholar 

  • Pecker, I., D. Chamovitz, H. Linden, G. Sandmann & J. Hirschberg, 1992. A single polypeptide catalyzing the conversion of phytoene to ζ-carotene is transcriptionally regulated during tomato fruit ripening. Proc Nat Acad Sci USA 89: 4962-4966.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, A. & C. Martin, 1987. Rapid method for the quantitative assessment of levels of specific mRNAs in plants. Plant Mol Biol Rep 4: 219-224.

    CAS  Google Scholar 

  • Rissler, H.M. & B.J. Pogson, 2001. Antisense inhibition of the betacarotene hydroxylase enzyme in Arabidopsis and the implications for carotenoid accumulation, photoprotection and antenna assembly. Photo Res 67: 127-137.

    Article  CAS  Google Scholar 

  • Romer, S., A. Saint-Guily, F. Montrichard, M.L. Schantz, J.H. Weil, R. Schantz, M. Kuntz & B. Camara, 1992. Characterization of cDNAs which encode enzymes involved in chromoplast differentiation and carotenoid biosynthesis in Capsicum annum. In: J.H. Argyroudi-Akoyunoglou (Ed.), Regulation of Chloroplast Biogenesis, pp. 63-69. Plenum Press, New York.

    Google Scholar 

  • Sun, Z., E. Gantt & F.X. Cunningham, 1996. Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. J Biochem Chem 271: 24349-24352.

    CAS  Google Scholar 

  • Vainstein, A., A.H. Halevy, I. Smirra & M. Visnhevetsky, 1994. Chromoplast biogenesis in Cucumis sativus corollas. Plant Physiol 104: 321-326.

    PubMed  CAS  Google Scholar 

  • Vishnevetsky, M., M. Ovadis, A. Zuker & A. Vainstein, 1999. Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. Plant J 20: 423-431.

    Article  PubMed  CAS  Google Scholar 

  • Wellburn, A.R., 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various spectrophotometers of different resolution. J Plant Physiol 144: 307-313.

    CAS  Google Scholar 

  • Zsila, F., J. Deli & M. Simonyi, 2001. Color and chirality: carotenoid self-assemblies in flower petals. Planta 213: 937-942.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, K.M., Lewis, D.H. & Morgan, E.R. Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca (Hook). Euphytica 130, 25–34 (2003). https://doi.org/10.1023/A:1022328828688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022328828688

Navigation