Skip to main content
Log in

Tumor-Cell Targeted Epidermal Growth Factor Liposomes Loaded with Boronated Acridine: Uptake and Processing

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of this work was to investigate the cellular binding and processing of polyethylene glycol-stabilized epidermal growth factor (EGF) liposomes. The liposomes were actively loaded with water-soluble boronated acridine (WSA), primarily developed for boron neutron capture therapy.

Methods. The uptake, internalization, and retention of EGF-liposome conjugates were studied in two cultured monolayer cell-lines, A-431 and U-343, with regard to the nuclide-label on the targeting agent, the carrier, and the load. The subcellular localization of WSA was studied using confocal microscopy.

Results. We found that the liposome complex was internalized after specific binding to the EGF receptor. After internalization in the tumor cells, WSA was distributed mainly in the cytoplasm and was shown to have long cellular retention, with 80% of the boron remaining after 48 h.

Conclusions. The long retention of the compound and the cellular boron concentration reached makes these targeted liposomes interesting for further development toward boron neutron capture therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Gregoriadis, E. J. Wills, C. P. Swain, and A. S. Tavill. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1:1313-1316 (1974).

    Google Scholar 

  2. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA 88:11460-11464 (1991).

    Google Scholar 

  3. A. A. Gabizon. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res. 52:891-896 (1992).

    Google Scholar 

  4. A. L. Klibanov, K. Maruyama, V. P. Torchilin, and L. Huang. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235-237 (1990).

    Google Scholar 

  5. I. A. Bakker-Woudenberg, A. F. Lokerse, M. T. ten Kate, J. W. Mouton, M. C. Woodle, and G. Storm. Liposomes with prolonged blood circulation and selective localization in Klebsiella pneumoniae-infected lung tissue. J. Infect. Dis. 168:164-171 (1993).

    Google Scholar 

  6. T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, and S. Zalipsky. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim. Biophys. Acta 1237:99-108 (1995).

    Google Scholar 

  7. J. Carlsson, L. Gedda, C. Gronvik, T. Hartman, A. Lindstrom, P. Lindstrom, H. Lundqvist, A. Lovqvist, J. Malmqvist, P. Olsson, S. Mayfield, J. P. Vaughn, T. E. Kute, W. A. Denny, R. L. Gutman, G. Peacock, and D. R. Lu. Strategy for boron neutron capture therapy against tumor cells with over-expression of the epidermal growth factor-receptor. Int. J. Radiat. Oncol. Biol. Phys. 30:105-115 (1994).

    Google Scholar 

  8. Y. Ishii, Y. Aramaki, T. Hara, S. Tsuchiya, and T. Fuwa. Preparation of EGF labeled liposomes and their uptake by hepatocytes. Biochem. Biophys. Res. Commun. 160:732-736 (1989).

    Google Scholar 

  9. A. Kikuchi, S. Sugaya, H. Ueda, K. Tanaka, Y. Aramaki, T. Hara, H. Arima, S. Tsuchiya, and T. Fuwa. Efficient gene transfer to EGF receptor overexpressing cancer cells by means of EGF-labeled cationic liposomes. Biochem. Biophys. Res. Commun. 227:666-671 (1996).

    Google Scholar 

  10. D. C. Drummond, K. Hong, J. W. Park, C. C. Benz, and D. B. Kirpotin. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm. 60:285-332 (2000).

    Google Scholar 

  11. J. W. Park, D. B. Kirpotin, K. Hong, R. Shalaby, Y. Shao, U. B. Nielsen, J. D. Marks, D. Papahadjopoulos, and C. C. Benz. Tumor targeting using anti-her2 immunoliposomes. J. Control. Release 74:95-113 (2001).

    Google Scholar 

  12. D. E. Lopes de Menezes, M. J. Kirchmeier, J.-F. Gagne, L. M. Pilarski, and T. M. Allen. Cellular trafficking and cytotoxicity of anti-CD19-targeted liposomal doxorubicin in B lymphoma cells. J. Liposome Res. 9:199-228 (1999).

    Google Scholar 

  13. A. Gabizon, A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M. M. Qazen, and S. Zalipsky. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug. Chem. 10:289-298 (1999).

    Google Scholar 

  14. T. Hartman, H. Lundqvist, J. E. Westlin, and J. Carlsson. Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with (131)I labeled ligands or antibodies. Int. J. Radiat. Oncol. Biol. Phys. 46:1025-1036 (2000).

    Google Scholar 

  15. H. Ghaneolhosseini, W. Tjarks, and S. Sjöberg. Synthesis of novel boronated acridines-and spermidines as possible agents for BNCT. Tetrahedon 54:3877-3884 (1998).

    Google Scholar 

  16. R. F. Barth, A. H. Soloway, and R. M. Brugger. Boron neutron capture therapy of brain tumors: past history, current status and future potential. Cancer Invest. 14:534-550 (1996).

    Google Scholar 

  17. M. Johnsson, N. Bergstrand, and K. Edwards. Optimization of drug loading procedures and characterization of liposomal formulations of two novel agents intended for boron neutron capture therapy (BNCT). J. Liposome Res. 9:53-79 (1999).

    Google Scholar 

  18. B. Westermark, A. Magnusson, and C.-H. Heldin. Effect of epidermal growth factor on membrane motility and cell locomotion in cultures of human clonal glioma cells. J. Neurol. Res. 8:491-507 (1982).

    Google Scholar 

  19. H. Haigler, J. F. Ash, S. J. Singer, S. Cohen, F. M. Yakes, W. Chinratanalab, C. A. Ritter, W. King, S. Seelig, and C. L. Arteaga. Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc. Natl. Acad. Sci. USA 75:3317-3321 (1978).

    Google Scholar 

  20. E. Bohl Kullberg, N. Bergstrand, J. Carlsson, K. Edwards, M. Johnsson, S. Sjoberg, and L. Gedda. Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents. Bioconjug. Chem. 13:737-743 (2002).

    Google Scholar 

  21. D. D. Lasic, B. Ceh, M. C. Stuart, L. Guo, P. M. Frederik, and Y. Barenholz. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim. Biophys. Acta 1239:145-156 (1995).

    Google Scholar 

  22. H. T. Haigler, F. R. Maxfield, M. C. Willingham, and I. Pastan. Dansylcadaverine inhibits internalization of 125I-Epidermal Growth Factor in BALB 3T3 cells. J. Biol. Chem. 255:1239-1241 (1980).

    Google Scholar 

  23. P. Lindström, P. Olsson, J. Malmqvist, J. Pettersson, P. Lemmen, B. Werner, S. Sjöberg, å. Olin, and J. Carlsson. New carborane-based compounds for boron neutron capture therapy: binding and toxicity of ANC-1, DAC-1 and B-Et-11-OMe in cultured human glioma and mouse melanoma cells. Anticancer Drugs 5:43-52 (1994).

    Google Scholar 

  24. P. Olsson, A. Lindstrom, and J. Carlsson. Internalization and excretion of epidermal growth factor-dextran-associated radioactivity in cultured human squamous-carcinoma cells. Int. J. Cancer 56:529-537 (1994).

    Google Scholar 

  25. D. Goren, A. T. Horowitz, D. Tzemach, M. Tarshish, S. Zalipsky, and A. Gabizon. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 6:1949-1957 (2000).

    Google Scholar 

  26. D. E. Lopes de Menezes, L. M. Pilarski, A. R. Belch, and T. M. Allen. Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo. Biochim. Biophys. Acta 1466:205-220 (2000).

    Google Scholar 

  27. A. Sorkin and C. M. Waters. Endocytosis of growth factor receptors. Bioessays 15:375-382 (1993).

    Google Scholar 

  28. E. Mastrobattista, G. A. Koning, and G. Storm. Immunoliposomes for the targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev. 40:103-127 (1999).

    Google Scholar 

  29. V. A. Slepushkin, S. Simoes, P. Dazin, M. S. Newman, L. S. Guo, M. C. Pedroso de Lima, and N. Duzgunes. Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J. Biol. Chem. 272:2382-2388 (1997).

    Google Scholar 

  30. D. C. Drummond, M. Zignani, and J. Leroux. Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid Res. 39:409-460 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Bohl Kullberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kullberg, E.B., Nestor, M. & Gedda, L. Tumor-Cell Targeted Epidermal Growth Factor Liposomes Loaded with Boronated Acridine: Uptake and Processing. Pharm Res 20, 229–236 (2003). https://doi.org/10.1023/A:1022223204460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022223204460

Navigation