Skip to main content
Log in

Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero: Lepidoptera, Nymphalidae); implications for conservation

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genetic drift tends to lower geneticvariability in peripheral and isolatedpopulations. These populations also tend todiverge from more central populations if thedegree of isolation is high enough. Theseprocesses could have opposite effects on thevalue of the respective populations in thespecies conservation context. On the basis ofallozyme polymorphism data, we compare geneticvariability and differentiation between core,peripheral and isolated populations of thescarce heath, a butterfly endangered inNorthern and Central Europe. Genetic variationwas lowest in populations that were bothperipheral and isolated(P = 16.5%, Hobs = 0.017),and highest in the central populations(P = 35%,Hobs = 0.052). However, overall variability waslow also in the core area compared to that ofclosely related butterfly species. Theperipheral region was more differentiated fromthe other regions than the isolated region(FPC = 0.118, FPI = 0.257,FIC = 0.068). This study indicated thatisolation in combination with marginality havecaused an erosion of the gene pool. Theobserved patterns may be caused both by thecontemporary population structure of thespecies, as well as by the colonisationhistory. Both genetic and ecological evidencesuggests that the species is likely to followthe stepping-stone model of dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1986) Heterozygosity and fitness in natural populations of animals. In: Conservation Biology. The Science of Scarcity and Diversity (ed. Soulé ME), pp. 57–76.Sinauer associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Avise JC (1994) Speciation and hybridization. In: Molecular Markers, Natural History and Evolution, pp. 252–305. Chapman and Hall, New York.

    Google Scholar 

  • Berglind S-Å (1996) Coenonympha hero Linné 1761, Scarce Heath. Species Fact Sheet. Threatened Species Unit, Uppsala (In Swedish).

  • Bossart JL, Scriber JM (1995) Maintenance of ecologically significant genetic variation in the Tiger Swallowtail butterfly through differential selection and gene flow. Evolution, 49(6), 1163–1171.

    Google Scholar 

  • Brookes MI, Graneau YA, King P, Rose OC, Thomas CD, Mallet JLB (1997) Genetic analysis of founder bottlenecks in the rare British butterfly Plebejus argus. Cons. Biol., 11, 648–661.

    Google Scholar 

  • Cassel A, Windig J, Nylin S, Wiklund C (2001) Effects of population size and food stress on fitness-related characters in the scarce heath, a rare butterfly in Western Europe. Conserv. Biol., 15, 1667–1673.

    Google Scholar 

  • Felsenstein J (1989) PHYLIP; phylogeny inference package (version 3.2). Cladistics, 5, 164–166.

    Google Scholar 

  • Goudet J (1995) FSTAT version 1.2: A computer program to calculate F-statistics. J. Hered., 86, 485–486.

    Google Scholar 

  • Gärdenfors U (ed.) (2000) The 2000 Redlist of Swedish species. Uppsala (In Swedish).

  • Hartl DL, Clark AG (1997) Random genetic drift. In: Principles of Population Genetics. 3rd edition, pp. 267–312. Sinauer associates, Inc. Sunderland, Massachusetts.

    Google Scholar 

  • Hedrick PW (1994) Purging inbreeding depression and the probability of extinction: Full-sib mating. Heredity, 73, 363–372.

    Google Scholar 

  • Hewitt GM(1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc., 58, 247–276.

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol. J. Linn. Soc., 68, 87–112.

    Google Scholar 

  • Hindar K, Aagaard K, Balstad T, Hanssen O (1997) Genetisk variasjon og levedyktighet hos sommerfugler. Scientific report to The Research Council of Norway.

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282–291.

    Google Scholar 

  • Johannesen J, Veith M, Seitz A (1996) Population genetic structure of the butterfly Melitaea didyma (Nymphalidae) along a northern distribution range border. Mol. Ecol., 5, 259–267.

    Google Scholar 

  • Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? TAG, 93, 215–221.

    Google Scholar 

  • Kesküla T (1992) Distribution Maps of Estonian Butterflies (Lepidoptera: Hesperoidea, Papilionidea). Acta musei zoologici universitatis Tartuensis No 6.

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol. Ecol., 8, 1481–1495.

    Google Scholar 

  • Korshunov YP, Gorbunov PY (1995) Butterflies of the Asian Part of Russia: A Handbook — Yekaterinburg, 202 pp. The Ural University publishers (In Russian).

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation and their use in population management. In: Viable Populations for Conservation (ed. ME Soulé), pp. 87–123. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv. Biol., 9, 753–760.

    Google Scholar 

  • Malacrida AR, Marinoni F, Torti C, Gomulski LM, Sebastiani F, Bonvicini C, Gasperi G, Guglielmino CR (1998) Genetic aspects of the worldwide colonization process of Ceratitis capitata. J. Hered., 9, 501–507.

    Google Scholar 

  • Marttila O, Haahtela T, Aarnio H, Ojalainen P (1990) Suomen perhoset. Päiväperhoset [Butterflies of Finland], 362 pp. Kirjayhtymä OY.

  • Motro U, Thomson G (1982) On heterozygosity and the effective size of populations subject to size changes. Evolution, 36, 1059–1066.

    Google Scholar 

  • Murphy RW, Sites JW jr, Buth DG, Haufler CH (1990) Proteins I: Isozyme electrophoresis. In: Molecular systematics (eds. Hillis DM, Moritz C), pp. 45–126. Sinauer Assoc., Sunderland.

    Google Scholar 

  • Nakanishi M, Wilson AC, Nolam RA, Gorman GC, Bailey GS (1969) Phenoxyethanol: Protein preservation for taxonomists. Science, 169, 681–683.

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics, 83, 583–590.

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Google Scholar 

  • Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J. (1988) Practical Isozyme Genetics. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Pamilo P, Savolainen O (1999) Post-glacial colonization, drift, local selection and conservation value of populations: A northern perspective. Hereditas, 130, 229–238.

    Google Scholar 

  • Porter AH, Geiger H (1988) Genetic and phenotypic structure of the Coenonympha tullia complex (Lepidoptera: Nympalidae: Satyrinae) in California: No evidence for species boundaries. Can. J. Zool., 66, 2751–2765.

    Google Scholar 

  • Porter AH, Schneider RW, Price BA (1995) Wing pattern and allozyme relationships in the Coenonympha arcania group, emphasising the C. gardetta-darwiniana contact area at Bellwald, Switzerland (Lepidoptera, Satyridae). Nota lepid., 17, 155–174.

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity, 86, 248–249.

    Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing Ltd., New York.

    Google Scholar 

  • Schmitt T, Seitz A (2001) Allozyme variation in Polyommatus coridon (Lepidoptera: Lycaenidae): Identification of ice-age refugia and reconstruction of post-glacial expansion. J. Biography, 28, 1–8.

    Google Scholar 

  • Schmitt T, Varga Z, Seitz A (2000) Forests as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera). Basic Appl. Ecol., 1, 53–59.

    Google Scholar 

  • Sjögren P (1991) Genetic variation in relation to demography of peripheral pool frog populations (Rana lessonae). Evol.Ecol., 5, 248–271.

    Google Scholar 

  • Sjögren-Gulve P, Berg LM (1999) Allozyme variation as a demographic predictor at high altitudes: The moor frog and the pool frog at 60°N. Hereditas, 130, 317–323.

    Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry. The principles and practice of statistics in biological research, 3rd edition, 813-819 pp. W.H. Freeman and company, New York.

    Google Scholar 

  • Stone GN, Sunnucks P (1993) Genetic consequences of an invasion through a patchy environment — the cynipid gallwasp Andricus quercuscalicis (Hymenoptera: Cynipidae). Mol. Ecol., 2, 251–268.

    Google Scholar 

  • Swedish National Atlas (1992) Jordbruket. Lantmäteriet / Kartcentrum. Stockholm (In swedish).

  • Swofford DL, Selander RB (1997) BIOSYS-2 A Computer Program for the Analysis of Allelic Variation in Genetics. University of Illinois at Urbana-Champaign Urbana, Illinois, USA.

    Google Scholar 

  • Tregenza T, Butlin RK (1999) Genetic diversity: Do marker genes tell us the whole story? In: Evolution of Biological Diversity (eds. Magurran AE, May RM), pp. 37–55. Oxford University Press, Oxford.

    Google Scholar 

  • Vandewoestijne S, Nève G, Baguette M (1999) Spatial and temporal population genetic structure of the butterfly Aglais urticae L. (Lepidoptera, Nymphalidae). Mol. Ecol., 8, 1539–1543.

    Google Scholar 

  • van Swaay C, Warren M (1999) Red Data Book of European Butterflies (Rhopalocera), 264 pp. Nature and environment, No. 99. Council of Europe Publishing, Strasbourg.

    Google Scholar 

  • Vasari Y (1986) The Holocene development of the Nordic landscape. In: Nordic Late Quaternary Biology and Ecology (ed. Königsson L-K), Strie, 24, 15–19. Uppsala.

  • Voelker RA, Schaffer HE, Mukai T (1980) Spontaneous allozyme mutations in Drosophila melanogaster: Rate of occurrence and nature of the mutants. Genetics, 94, 961–968.

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Wiemers M (1994) Differenzierungsmuster bei Artbildungsprozessen: Morphologisch-biometrische und enzymelektrophoretische Untersuchungen am Coenonympha arcania (Linnaeus, 1761) — Superspezies-Komplex (Lepidoptera: Nymphalidae: Satyrinae). — Diplomarbeit Univ. Bonn. 158 + 21 pp. and 8 plates (6 col.).

  • Wiemers M (1998) Coenonympha darwiniana — a hybrid taxon? New insights through allozyme electrophoresis (Lepidoptera, Nymphalidae, Satyrinae). Mem. Soc. R. belge Ent., 38, 41–69.

    Google Scholar 

  • Wiernasz DC (1989) Ecological and genetic correlates of range expansion in Coenonympha tullia. Biol. J. Linn. Soc., 38, 197–214.

    Google Scholar 

  • Wright S (1977) Evolution and the Genetics of Populations, vol. 3, 44–96 pp. Experimental results and evolutionary deductions. University of Chicago Press, Chicago.

    Google Scholar 

  • Wright S (1978) Evolution and the Genetics of Populations, vol. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassel, A., Tammaru, T. Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero: Lepidoptera, Nymphalidae); implications for conservation. Conservation Genetics 4, 83–93 (2003). https://doi.org/10.1023/A:1021884832122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021884832122

Navigation