Skip to main content
Log in

New Disorders in Carbohydrate Metabolism: Congenital Disorders of Glycosylation and Their Impact on the Endocrine System

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 2000;6:306–312.

    Google Scholar 

  2. Ellgaard L, Molinari M, Helenius A. Setting the standards: Quality control in the secretory pathway. Science 1999;286:1882–1888.

    Google Scholar 

  3. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J, <nt>eds.</nt> Essentials of Glycobiology. 1st ed. New York: Spring Harbor Laboratory Press, 1999.

    Google Scholar 

  4. Thor G, Brian AA. Glycosylation variants of murine interleukin-4: Evidence for different functional properties. Immunology 1992;75:143–149.

    Google Scholar 

  5. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 1992;61:307–330.

    Google Scholar 

  6. Varki A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993;3:97–130.

    Google Scholar 

  7. Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N, Speir JA, DiGennaro JA, Fetrow JS, Dwek RA, Wilson IA. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 1999;293:351–366.

    Google Scholar 

  8. Gahmberg CG, Tolvanen M. Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci 1996;21:308–311.

    Google Scholar 

  9. Springer T. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emmigration. In: Paul L, Issekutz T, eds. Adhesion Molecules in Health and Disease. New York: Marcel Dekker, 1997:1–54.

    Google Scholar 

  10. Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 1999;9:747–755.

    Google Scholar 

  11. Dwek RA. Biological importance of glycosylation. Dev Biol Stand 1998;96:43–47.

    Google Scholar 

  12. Freeze H. Update and perspectives on congenital disorders of glycosylation. Glycobiology 2001;11:129R–143R.

    Google Scholar 

  13. Freeze HH, Westphal V. Balancing N-linked glycosylation to avoid disease. Biochimie 2001;83:791–799.

    Google Scholar 

  14. Helenius J, Ng DT, Marolda CL, Walter P, Valvano MA, Aebi M. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 2002;415:447–450.

    Google Scholar 

  15. Stibler H, Holzbach U, Kristiansson B. Isoforms and levels of transferrin, antithrombin, alpha(1)-antitrypsin and thyroxine-binding globulin in 48 patients with carbohydrate-deficient glycoprotein syndrome type I. Scand J Clin Lab Invest 1998;58:55–61.

    Google Scholar 

  16. Aebi M, Helenius A, Schenk B, Barone R, Fiumara A, Berger EG, Hennet T, Imbach T, Stutz A, Bjursell C and others. Carbohydratedeficient glycoprotein syndromes become congenital disorders of glycosylation: An updated nomenclature for CDG. First International Workshop on CDGS. Glycoconj J 1999;16:669–671.

    Google Scholar 

  17. Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 1995;377:318–320.

    Google Scholar 

  18. de Koning TJ, Dorland L, van Diggelen OP, Boonman AM, de Jong GJ, van Noort WL, De Schryver J, Duran M, van den Berg IE, Gerwig GJ and others. A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency. Biochem Biophys Res Commun 1998;245:38–42.

    Google Scholar 

  19. Jaeken J, Matthijs G, Saudubray JM, Dionisi-Vici C, Bertini E, de Lonlay P, Henri H, Carchon H, Schollen E, Van Schaftingen E. Phosphomannose isomerase deficiency: A carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am J Hum Genet 1998;62:1535–1539.

    Google Scholar 

  20. Niehues R, Hasilik M, Alton G, Körner C, Schiebe-Sukumar M, Koch HG, Zimmer KP, Wu R, Harms E, Reiter K and others. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 1998;101:1414–1420.

    Google Scholar 

  21. Imbach T, Burda P, Kuhnert P, Wevers RA, Aebi M, Berger EG, Hennet T. A mutation in the human ortholog of the Saccharomyces cerevisiae ALG6 gene causes carbohydrate-deficient glycoprotein syndrome type-Ic. Proc Natl Acad Sci USA 1999;96:6982–6987.

    Google Scholar 

  22. Burda P, Borsig L, de Rijk-van Andel J, Wevers R, Jaeken J, Carchon H, Berger EG, Aebi M. A novel carbohydrate-deficient glycoprotein syndrome characterized by a deficiency in glucosylation of the dolichol-linked oligosaccharide. J Clin Invest 1998;102:647–652.

    Google Scholar 

  23. Korner C, Knauer R, Stephani U, Marquardt T, Lehle L, von Figura K. Carbohydrate deficient glycoprotein syndrome type IV: Defi-ciency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase. Embo J 1999;18:6816–6822.

    Google Scholar 

  24. Imbach T, Grünewald S, Schenk B, Burda P, Schollen E, Wevers RA, Jaeken J, de Klerk JB, Berger EG, Matthijs G and others. Multi-allelic origin of congenital disorder of glycosylation (CDG)-Ic. Hum Genet 2000;106:538–545.

    Google Scholar 

  25. Kim S, Westphal V, Srikrishna G, Mehta DP, Peterson S, Filiano J, Karnes PS, Patterson MC, Freeze HH. Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J Clin Invest 2000;105:191–198.

    Google Scholar 

  26. Schenk B, Imbach T, Frank CG, Grubenmann CE, Raymond GV, Hurvitz H, Raas-Rotschild A, Luder AS, Jaeken J, Berger EG and others. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. Journal of Clinical Investigation 2001;108:1687–1695.

    Google Scholar 

  27. Kranz C, Denecke J, Lehrman MA, Ray S, Kienz P, Kreissel G, Sagi D, Peter-Katalinic J, Freeze HH, Schmid T and others. A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If). Journal of Clinical Investigation 2001;108:1613–1619.

    Google Scholar 

  28. Chantret I, Dupre T, Delenda C, Bucher S, Dancourt J, Barnier A, Charollais A, Heron D, Bader-Meunier B, Danos O and others. Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose: Man7GlcNAc2-PP-dolichyl mannosyltransferase. J Biol Chem 2002;30:30.

    Google Scholar 

  29. Jaeken J, Schachter H, Carchon H, De Cock P, Coddeville B, Spik G. Carbohydrate deficient glycoprotein syndrome type II: A de-ficiency in Golgi localised N-acetyl-glucosaminyltransferase II. Arch Dis Child 1994;71:123–127.

    Google Scholar 

  30. de Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JF, Breuer W, Kamerling JP, Espeel MF, Martin JJ, de Paepe AM and others. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 2000;66:1744–1756.

    Google Scholar 

  31. Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 2001;28:69–72.

    Google Scholar 

  32. Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 2001;28:73–76.

    Google Scholar 

  33. Hansske B, Thiel C, Lubke T, Hasilik M, Honing S, Peters V, Heidemann PH, Hoffmann GF, Berger EG, von Figura K and others. Deficiency of UDP-galactose: N-acetylglucosamine beta-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest 2002;109:725–733.

    Google Scholar 

  34. Peters V, Penzien JM, Reiter G, Korner C, Hackler R, Assmann B, Fang J, Schaefer JR, Hoffmann GF, Heidemann PH. Congenital disorder of glycosylation IId (CDG-IId)—A new entity: Clinical presentation with Dandy-Walker malformation and myopathy. Neuropediatrics 2002;33:27–32.

    Google Scholar 

  35. Matthijs G, Schollen E, Bjursell C, Erlandson A, Freeze H, Imtiaz F, Kjaergaard S, Martinsson T, Schwartz M, Seta N and others. Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG-Ia). Hum Mutat 2000;16:386–394.

    Google Scholar 

  36. Matthijs G, Schollen E, Pardon E, Veiga-Da-Cunha M, Jaeken J, Cassiman JJ, Van Schaftingen E. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydratedeficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 1997;16:88–92.

    Google Scholar 

  37. Rush JS, Panneerselvam K, Waechter CJ, Freeze HH. Mannose supplementation corrects GDP-mannose deficiency in cultured fi-broblasts from some patients with congenital disorders of glycosylation (CDG). Glycobiology 2000;10:829–835.

    Google Scholar 

  38. Krasnewich DM, Holt GD, Brantly M, Skovby F, Redwine J, Gahl WA. Abnormal synthesis of dolichol-linked oligosaccharides in carbohydrate-deficient glycoprotein syndrome. Glycobiology 1995;5:503–510.

    Google Scholar 

  39. Briones P, Vilaseca MA, Garcia-Silva MT, Pineda M, Colomer J, Ferrer I, Artigas J, Jaeken J, Chabas A. Congenital disorders of glycosylation (CDG) may be underdiagnosed when mimicking mitochondrial disease. Europ J Paediatr Neurol 2001;5:127– 131.

    Google Scholar 

  40. Korner C, Knauer R, Holzbach U, Hanefeld F, Lehle L, von Figura K. Carbohydrate-deficient glycoprotein syndrome type V: Deficiency of dolichyl-P-Glc:Man9GlcNAc2-PP-dolichyl glucosyltransferase. Proc Natl Acad Sci USA 1998;95:13200–13205.

    Google Scholar 

  41. Schachter H. Congenital disorders involving defective Nglycosylation of proteins. Cell Mol Life Sci 2001;58:1085–1104.

    Google Scholar 

  42. Jaeken J, Matthijs G, Carchon H, Schaftingen EV. Defects of NGlycan Synthesis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Diseases, 8th ed., Vol. 1. New York: McGraw-Hill, Medical Publishing Division, 2001: 1601–1622.

    Google Scholar 

  43. Freeze HH. Congenital disorders of glycosylation and the pediatric liver. Semin Liver Dis 2001;21:501–616.

    Google Scholar 

  44. Bergen HR, Lacey JM, O'Brien JF, Naylor S. Online single-step analysis of blood proteins: The transferrin story. Anal Biochem 2001;296:122–129.

    Google Scholar 

  45. Lacey JM, Bergen HR, Magera MJ, Naylor S, O'Brien JF. Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry. Clin Chem 2001;47:513–518.

    Google Scholar 

  46. Clayton P, Winchester B, Di Tomaso E, Young E, Keir G, Rodeck C. Carbohydrate-deficient glycoprotein syndrome: Normal glycosylation in the fetus. Lancet 1993;341:956.

    Google Scholar 

  47. DiMartini A, Day N, Lane T, Beisler AT, Dew MA, Anton R. Carbohydrate deficient transferrin in abstaining patients with endstage liver disease. Alcohol Clin Exp Res 2001;25:1729–1733.

    Google Scholar 

  48. Charlwood J, Clayton P, Keir G, Mian N, Young E, Winchester B. Prenatal diagnosis of the carbohydrate-deficient glycoprotein syndrome type 1A (CDG1A) by a combination of enzymology and genetic linkage analysis after amniocentesis or chorionic villus sampling. Prenat Diagn 1998;18:693–699.

    Google Scholar 

  49. Stibler H, von Dobeln U, Kristiansson B, Guthenberg C. Carbohydrate-deficient transferrin in galactosaemia. Acta Paediatr 1997;86:1377–1378.

    Google Scholar 

  50. Martensson O, Harlin A, Brandt R, Seppa K, Sillanaukee P. Transferrin isoform distribution: Gender and alcohol consumption. Alcohol Clin Exp Res 1997;21:1710–1715.

    Google Scholar 

  51. Adamowicz M, Pronicka E. Carbohydrate deficient glycoprotein syndrome-like transferrin isoelectric focusing pattern in untreated fructosaemia. Eur J Pediatr 1996;155:347–348.

    Google Scholar 

  52. Mader I, Dobler-Neumann M, Kuker W, Stibler H, Krageloh-Mann I. Congenital disorder of glycosylation type Ia: Benign clinical course in a new genetic variant. Childs Nerv Syst 2002;18:77–80.

    Google Scholar 

  53. Dupre T, Cuer M, Barrot S, Barnier A, Cormier-Daire V, Munnich A, Durand G, Seta N. Congenital disorder of glycosylation Ia with deficient phosphomannomutase activity but normal plasma glycoprotein pattern. Clin Chem 2001;47:132–134.

    Google Scholar 

  54. Fletcher JM, Matthijs G, Jaeken J, Van Schaftingen E, Nelson PV. Carbohydrate-deficient glycoprotein syndrome: Beyond the screen. J Inherit Metab Dis 2000;23:396–398.

    Google Scholar 

  55. Callewaert N, Geysens S, Molemans F, Contreras R. Ultrasensitive profiling and sequencing of N-linked oligosaccharides using standard DNA-sequencing equipment. Glycobiology 2001;11:275–281.

    Google Scholar 

  56. de Lonlay P, Cormier-Daire V, Vuillaumier-Barrot S, Cuer M, Durand G, Munnich A, Saudubray JM, Seta N. Carbohydratedeficient blood glycoprotein syndrome. Arch Pediatr 2000;7:173– 184.

    Google Scholar 

  57. Babovic-Vuksanovic D, Patterson MC, Schwenk WF, O'Brien JF, Vockley J, Freeze HH, Mehta DP, Michels VV. Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome. J Pediatr 1999;135:775–781.

    Google Scholar 

  58. Kjaergaard S, Kristiansson B, Stibler H, Freeze HH, Schwartz M, Martinsson T, Skovby F. Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type 1A. Acta Paediatr 1998;87:884–888.

    Google Scholar 

  59. Mayatepek E, Schröder M, Kohlmuller D, Bieger WP, Nutzenadel W. Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr 1997;86:1138–1140.

    Google Scholar 

  60. Marquardt T, Hasilik M, Niehues R, Herting M, Muntau A, Holzbach U, Hanefeld F, Freeze H, Harms E. Mannose therapy in carbohydrate-deficient glycoprotein syndrome type I—first results of the German multicenter study. Amino Acids 1997;12:389.

    Google Scholar 

  61. Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 1999;94:3976–3985.

    Google Scholar 

  62. Jaeken J, Stibler H, Hagberg B. The carbohydrate-deficient glycoprotein syndrome. A new inherited multisystemic disease with severe nervous system involvement. Acta Paediatr Scand Suppl 1991;375:1–71.

    Google Scholar 

  63. Krasnewich D, Gahl WA. Carbohydrate-deficient glycoprotein syndrome. Adv Pediatr 1997;44:109–140.

    Google Scholar 

  64. Jaeken J, Carchon H. Congenital disorders of glycosylation: The rapidly growing tip of the iceberg. Curr Opin Neurol 2001;14:811– 815.

    Google Scholar 

  65. Grünewald S, Schollen E, Van Schaftingen E, Jaeken J, Matthijs G. High residual activity of PMM2 in patients' fibroblasts: Possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am J Hum Genet 2001;68:347–354.

    Google Scholar 

  66. Westphal V, Peterson S, Patterson M, Tournay M, Blumenthal A, Treacy E, Freeze H. Functional significance ofPMM2mutations in mildly affected patients with congenital disorders of glycosylation Ia. Genetics in Medicine 2001;3:393–398.

    Google Scholar 

  67. van Ommen CH, Peters M, Barth PG, Vreken P, Wanders RJ, Jaeken J. Carbohydrate-deficient glycoprotein syndrome type 1a:A variant phenotype with borderline cognitive dysfunction, cerebellar hypoplasia, and coagulation disturbances. JPediatr 2000;136:400–403.

    Google Scholar 

  68. Grünewald S, Imbach T, Huijben K, Rubio-Gozalbo ME, Verrips A, de Klerk JB, Stroink H, de Rijk-van Andel JF, Van Hove JL, Wendel U and others. Clinical and biochemical characteristics of congenital disorder of glycosylation type Ic, the first recognized endoplasmic reticulum defect in N-glycan synthesis. Ann Neurol 2000;47:776–781.

    Google Scholar 

  69. Barone R, Pavone L, Fiumara A, Bianchini R, Jaeken J. Developmental patterns and neuropsychological assessment in patients with carbohydrate-deficient glycoconjugate syndrome type IA (phosphomannomutase deficiency). Brain Dev 1999;21:260–263.

    Google Scholar 

  70. Stibler H, Blennow G, Kristiansson B, Lindehammer H, Hagberg B. Carbohydrate-deficient glycoprotein syndrome: Clinical expression in adults with a new metabolic disease. J Neurol Neurosurg Psychiatry 1994;57:552–556.

    Google Scholar 

  71. Jaeken J, Vanderschueren-Lodewyckx M, Caeaer P, Snoeck L, Corbeel L, Eggermont E. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG deficiency, increased serum arysulphatase A and increased CSF protein: A new syndrome? Pediatric Res 1980;14:179.

    Google Scholar 

  72. de Zegher F, Jaeken J. Endocrinology of the carbohydrate-deficient glycoprotein syndrome type 1 from birth through adolescence. Pediatr Res 1995;37:395–401.

    Google Scholar 

  73. Kristiansson B, Stibler H, Wide L. Gonadal function and glycoprotein hormones in the carbohydrate-deficient glycoprotein (CDG) syndrome. Acta Paediatr 1995;84:655–659.

    Google Scholar 

  74. Westphal V, Kjaergaard S, Davis JA, Peterson SM, Skovby F, Freeze HH. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: Long-term outcome and effects of mannose supplementation. Mol Genet Metab 2001;73:77–85.

    Google Scholar 

  75. Pineda M, Pavia C, Vilaseca MA, Ferrer I, Temudo T, Chabas A, Stibler H, Jaeken J. Normal pubertal development in a female with carbohydrate deficient glycoprotein syndrome. Arch Dis Child 1996;74:242–243.

    Google Scholar 

  76. Artigas J, Cardo E, Pineda M, Nosas R, Jaeken J. Phosphomannomutase deficiency and normal pubertal development. J Inherit Metab Dis 1998;21:78–79.

    Google Scholar 

  77. McDowell G, Gahl WA. Inherited disorders of glycoprotein synthesis: Cell biological insights. Proc Soc Exp Biol Med 1997;215:145– 157.

    Google Scholar 

  78. Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, Koch R. Hypergonadotropic hypogonadism in female patients with galactosemia. N Engl J Med 1981;304:994–998.

    Google Scholar 

  79. Ohzeki T, Motozumi H, Hanaki K, Ohtahara H, Urashima H, Tsukuda T, Kobayashi S, Shiraki K, Ohno K. Carbohydratedeficient glycoprotein syndrome in a girl with hypogonadism due to inactive follicle stimulating hormone. Horm Metab Res 1993;25:646–648.

    Google Scholar 

  80. Sairam MR, Bhargavi GN. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones. Science 1985;229:65–67.

    Google Scholar 

  81. Ulloa-Aguirre A, Maldonado A, Damian-Matsumura P, Timossi C. Endocrine regulation of gonadotropin glycosylation. Arch Med Res 2001;32:520–532.

    Google Scholar 

  82. Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the folliclestimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 1997;15:205–206.

    Google Scholar 

  83. Aittomaki K, Herva R, Stenman UH, Juntunen K, Ylostalo P, Hovatta O, de la Chapelle A. Clinical features of primary ovarian failure caused by a point mutation in the follicle-stimulating hormone receptor gene. J Clin Endocrinol Metab 1996;81:3722–3726.

    Google Scholar 

  84. Davis D, Liu X, Segaloff DL. Identification of the sites of N-linked glycosylation on the follicle-stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol Endocrinol 1995;9:159–170.

    Google Scholar 

  85. Davis DP, Rozell TG, Liu X, Segaloff DL. The six N-linked carbohydrates of the lutropin/choriogonadotropin receptor are not absolutely required for correct folding, cell surface expression, hormone binding, or signal transduction. Mol Endocrinol 1997;11:550–562.

    Google Scholar 

  86. Kristiansson B, Andersson M, Tonnby B, Hagberg B. Disialotransferrin developmental deficiency syndrome. Arch Dis Child 1989;64:71–76.

    Google Scholar 

  87. Hagberg BA, Blennow G, Kristiansson B, Stibler H. Carbohydratedeficient glycoprotein syndromes: Peculiar group of newdisorders. Pediatr Neurol 1993;9:255–262.

    Google Scholar 

  88. Berkowitz GS, Lapinski RH, Dolgin SE, Gazella JG, Bodian CA, Holzman IR. Prevalence and natural history of cryptorchidism. Pediatrics 1993;92:44–49.

    Google Scholar 

  89. Behrman R. Nelson Textbook of Pediatrics. Philadelphia: W. B. Saunders Company, 1997.

    Google Scholar 

  90. Veneselli E, Biancheri R, Di Rocco M, Tortorelli S. Neurophysiological findings in a case of carbohydrate-deficient glycoprotein (CDG) syndrome type I with phosphomannomutase deficiency. Europ J Paediatr Neurol 1998;2:239–244.

    Google Scholar 

  91. Ferrari MC, Parini R, Di Rocco MD, Radetti G, Beck-Peccoz P, Persani L. Lectin analyses of glycoprotein hormones in patients with congenital disorders of glycosylation. Eur J Endocrinol 2001;144:409–416.

    Google Scholar 

  92. Enns GM, Steiner RD, Buist N, Cowan C, Leppig KA, McCracken MF, Westphal V, Freeze HH, O'Brien JF, Jaeken J, Behera S, Hudgins L. Clinical and molecular features in North American congenital disorder of glycosylation type I patients with diverse ethnic origins. J Pediatrics 2002;141:695–700.

    Google Scholar 

  93. Acarregui MJ, George TN, Rhead WJ. Carbohydrate-deficient glycoprotein syndrome type 1 with profound thrombocytopenia and normal phosphomannomutase and phosphomannose isomerase activities.J Pediatr 1998;133:697–700.

    Google Scholar 

  94. Westphal V, Murch S, Kim S, Srikrishna G, Winchester B, Day R, Freeze HH. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation. Am J Pathol 2000;157:1917–1925.

    Google Scholar 

  95. Avvakumov GV, Warmels-Rodenhiser S, Hammond GL. Glycosylation of human corticosteroid-binding globulin at aspargine 238 is necessary for steroid binding. J Biol Chem 1993;268:862– 866.

    Google Scholar 

  96. Avvakumov GV. Structure and function of corticosteroid-binding globulin: Role of carbohydrates. J Steroid Biochem Mol Biol 1995;53:515–522.

    Google Scholar 

  97. Warady BA, Howard CP, Hellerstein S, Alon U, Grunt JA. Congenital nephrosis in association with hypothyroidism and hypoadrenocorticism. Pediatr Nephrol 1993;7:79–80.

    Google Scholar 

  98. Hutchesson AC, Gray RG, Spencer DA, Keir G. Carbohydrate deficient glycoprotein syndrome: Multiple abnormalities and diagnostic delay. Arch Dis Child 1995;72:445–446.

    Google Scholar 

  99. Rose SR. Disorders of thyrotropin synthesis, secretion, and function. Curr Opin Pediatr 2000;12:375–381.

    Google Scholar 

  100. Thotakura NR, Desai RK, Szkudlinski MW, Weintraub BD. The role of the oligosaccharide chains of thyrotropin alpha-and betasubunits in hormone action. Endocrinology 1992;131:82–88.

    Google Scholar 

  101. Graves P, Pritsker A, Davies TF. Post-translational processing of the natural human thyrotropin receptor: Demonstration of more than two cleavage sites. J Clin Endocrinol Metab 1999;84:2177–2181.

    Google Scholar 

  102. Oda Y, Sanders J, Roberts S, Maruyama M, Kiddie A, Furmaniak J, Smith BR. Analysis of carbohydrate residues on recombinant human thyrotropin receptor. J Clin Endocrinol Metab 1999;84:2119–2125.

    Google Scholar 

  103. Jaeken J, Carchon H. The carbohydrate-deficient glycoprotein syndromes: An overview. J Inherit Metab Dis 1993;16:813–820.

    Google Scholar 

  104. Macchia PE, Harrison HH, Scherberg NH, Sunthornthepfvarakul T, Jaeken J, Refetoff S. Thyroid function tests and characterization of thyroxine-binding globulin in the carbohydrate-deficient glycoprotein syndrome type I. J Clin Endocrinol Metab 1995;80:3744–3749.

    Google Scholar 

  105. Ramaekers VT, Stibler H, Kint J, Jaeken J. A new variant of the carbohydrate deficient glycoproteins syndrome. J Inherit Metab Dis 1991;14:385–388.

    Google Scholar 

  106. Butler AA, LeRoith D. Minireview: Tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology 2001;142:1685–1688.

    Google Scholar 

  107. Wetterau LA, Moore MG, Lee KW, Shim ML, Cohen P. Novel aspects of the insulin-like growth factor binding proteins. Mol Genet Metab 1999;68:161–181.

    Google Scholar 

  108. Baxter RC. Circulating levels and molecular distribution of the acid-labile (alpha) subunit of the high molecular weight insulin-like growth factor-binding protein complex. J Clin Endocrinol Metab 1990;70:1347–1353.

    Google Scholar 

  109. Guler HP, Zapf J, Schmid C, Froesch ER. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol (Copenh) 1989;121:753–758.

    Google Scholar 

  110. Janosi JB, Firth SM, Bond JJ, Baxter RC, Delhanty PJ. N-Linked glycosylation and sialylation of the acid-labile subunit. Role in complex formation with insulin-like growth factor (IGF)-binding protein-3 and the IGFs. J Biol Chem 1999;274:5292–5298.

    Google Scholar 

  111. Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: An important but forgotten component of the circulating IGF system. J Endocrinol 2001;170:63–70.

    Google Scholar 

  112. Sommer A, Spratt SK, Tatsuno GP, Tressel T, Lee R, Maack CA. Properties of glycosylated and non-glycosylated human recombinant IGF binding protein-3 (IGFBP-3). Growth Regul 1993;3:46– 49.

    Google Scholar 

  113. Firth SM, Baxter RC. Characterisation of recombinant glycosylation variants of insulin-like growth factor binding protein-3. J Endocrinol 1999;160:379–387.

    Google Scholar 

  114. Miller B, Khosravi M, Zimmerman D, Patterson M, Connover C. The IGF cascade in children with CDG 1A. Glycoconjugate Journal 2001;18:C8.8, 57.

    Google Scholar 

  115. de Lonlay P, Cuer M, Vuillaumier-Barrot S, Beaune G, Castelnau P, Kretz M, Durand G, Saudubray JM, Seta N. Hyperinsulinemic hypoglycemia as a presenting sign in phosphomannose isomerase deficiency: A new manifestation of carbohydrate-deficient glycoprotein syndrome treatable with mannose. J Pediatr 1999;135:379– 383.

    Google Scholar 

  116. Schollen E, Kjaergaard S, Legius E, Schwartz M, Matthijs G. Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia). Eur J Hum Genet 2000;8:367–371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, B.S., Freeze, H.H. New Disorders in Carbohydrate Metabolism: Congenital Disorders of Glycosylation and Their Impact on the Endocrine System. Rev Endocr Metab Disord 4, 103–113 (2003). https://doi.org/10.1023/A:1021883605280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021883605280

Navigation