Skip to main content
Log in

Chemical Defense of Early Life Stages of Benthic Marine Invertebrates

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Augner, M. and Bernays, E. A. 1998. Plant defense signals and Batesian mimicry. Evol. Ecol. 12:667–679.

    Google Scholar 

  • Benkendorff, K., Bremner, J. B., and Davis, A. R. 2000. Tyrian purple precursors in the egg masses of the Australian muricid Dicathais orbita: a possible defensive role. J. Chem. Ecol. 26:1037–1050.

    Google Scholar 

  • Bullard, S. G., Lindquist, N. L., and Hay, M. E. 1999. Susceptibility of invertebrate larvae to predators: how common are post-capture larval defenses? Mar. Ecol. Prog. Ser. 191:153–161.

    Google Scholar 

  • Coll, J. C., Leone, P. A., Bowden, B. F., Carroll, A. R., KÖnig, G. M., Heaton, A., De Nys, R., Maida, M., AliÑo, P. M., Willis, R. H., Babcock, R. C., Florian, Z., Clayton, M. N., Miller, R. L., and Alderslade, P. N. 1995. Chemical aspects of mass spawning in corals. II. (°)-epi-Thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar. Biol. 123:137–143.

    Google Scholar 

  • Cowart, J. D., Fielman, K. T., Woodin, S. A., and Lincoln, D. E. 2000. Halogenated metabolites in two marine polychaetes and their planktotrophic and lecithotrophic larvae. Mar. Biol. 136:993–1002.

    Google Scholar 

  • Cowden, C., Young, C., M., and Chia., F.-S. 1984. Differential predation on marine invertebrate larvae by two benthic predators. Mar. Ecol. Prog. Ser. 14:145–149.

    Google Scholar 

  • Davidson, S. K., Allen, S. W., Lim, G. E., Anderson, C. M., and Haygood, M. G. 2001. Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl. Environ Micro 67:4531–4537.

    Google Scholar 

  • Dunlap, M. and Pawlik, J. R. 1996. Video-monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. Mar. Biol. 126; 117–123.

    Google Scholar 

  • Faulkner, D. J. 2002. Marine natural products. J. Nat. prod. 19:1–48.

    Google Scholar 

  • Faulkner, D. J., Harper, M. K., Salomon, C. E., and Schmidt, E.W. 1999. Localisation of bioactive metabolites in marine sponges. Mem. Queensl. Mus. 44:167–173.

    Google Scholar 

  • Gil-Turnes, M. S. and Fenical, W. 1992. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol. Bull. 182:105–108.

    Google Scholar 

  • Gil-Turnes, M. S., Hay, M. E., and Fenical, W. 1989. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118.

    Google Scholar 

  • Gosselin, L. A. and Qian, P.-Y. 1997. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146:256–282.

    Google Scholar 

  • Grosberg, R. K. and Quinn, J. F. 1986. The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322:456–459.

    Google Scholar 

  • Harvell, C. D., West, J. M., and Griggs, C. 1996. Chemical defense of embryos and larvae of a West Indian gorgonian coral, Briareum asbestinus. lnven. Reprod. Dev. 30:239–246. CHEMICAL DEFENSE OF EARLY LIFE-STAGE INVERTEBRATES 1999

    Google Scholar 

  • Hay, M. E. 1996. Marine chemical ecology: what's known and what's next? J. Exp. Mar. Biol. Ecol. 200:103–134.

    Google Scholar 

  • Haygood, M. G., Schmidt, E.W., Davidson, S. K., and Faulkner, D. J. 1999. Microbial symbionts of marine invertebrates; opportunities for microbial biotechnology. J. Mol. Microbiol. Biotechnol. 1:33–43.

    Google Scholar 

  • Howden, M.E.H., Lucas, J. S., McDuff, M., and Salathe, R. 1975. Chemical defense of Acanthaster planci, pp. 67–79, in Crown-of-thorns Starfish Seminar Proceedings, Brisbane 1974. Australian Govt. Publ. Service, Canberra.

    Google Scholar 

  • Hunt, H. L. and Scheibling, R. E. 1997. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 155:269–301.

    Google Scholar 

  • Iyengar, E. V. and Harvell, C. D. 2001. Predator deterrence of early developmental stages of temperate lecithotrophic asteroids and holothuroids. J. Exp. Mar. Biol. Ecol. 264:171–188.

    Google Scholar 

  • Jackson, J. B. C. 1985. Distribution and ecology of clonal and aclonal benthic invertebrates, pp. 297–355 in J. B. C. Jackson, L. W. Buss, and R. E. Cook (eds.). Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven Connecticut.

    Google Scholar 

  • Jackson, J. B. C. 1986. Modes of dispersal of clonal benthic invertebrates: consequences for species distributions and genetic population structure of local population. Bull. Mar. Sci. 39:588–606.

    Google Scholar 

  • Janzen, D. H. 1971. Seed predation by animals. Annu. Rev. Ecol. Syst. 2:465–492.

    Google Scholar 

  • Kelman, D., Kushmaro, A., Loya, Y., Kashman, Y., and Benayahu, Y. 1998. Antimicrobial activity of a Red Sea soft coral, Parerythropodium fulvum fulvum: reproductive and developmental considerations. Mar. Ecol. Prog. Ser. 169:87–95.

    Google Scholar 

  • Klumpp, D. W., McKinnon, A. D., and Mundy, C. N. 1988. Motile cryptofauna of a coral reef: abundance, distribution and trophic potential. Mar. Ecol. Prog. Ser. 45: 95–108.

    Google Scholar 

  • Kobayashi, J. and Ishibashi, M. 1993. Bioactive metabolites of symbiotic marine microorganisms. Chem. Rev. 93:1753–1769.

    Google Scholar 

  • Lasker, H. R., Kim, K., and Coffroth, M. A. 1998. Production, settlement, and survival of plexaurid gorgonian recruits. Mar. Ecol. Prog. Ser. 162:111–123.

    Google Scholar 

  • Lindquist, N. 1996. Palatability of invertebrate larvae to corals and sea anemones. Mar. Biol. 126:745–755.

    Google Scholar 

  • Lindquist, N. and Fenical, W. 1991. New tambjamine class alkaloids from the marine ascidian Atapozoa sp. and its nudibranch predators-origin of the tambjamines in Atapozoa. Experientia 47:504–506.

    Google Scholar 

  • Lindquist, N. and Hay, M. E. 1995. Can small rare prey be chemically defended? The case for marine larvae. Ecology 76:1347–1358.

    Google Scholar 

  • Lindquist, N. and Hay, M. E. 1996. Palatability and chemical defense of marine invertebrate larvae. Ecol. Monogr. 66:431–450.

    Google Scholar 

  • Lindquist, N., Hay, M. E., and Fenical, W. 1992. Defense of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. Ecol. Monogr. 62:547–568.

    Google Scholar 

  • Lindquist, N., Bolser, R., and Laing, K. 1997. Timing of larval release by two Caribbean demosponges. Mar. Ecol. Prog. Ser. 155:309–313.

    Google Scholar 

  • Lucas, J. S., Hart, R. J., Howden, M. E., and Salathe, R. 1979. Saponins in eggs and larvae of Acanthaster planci (L.) (Asteroidea) as chemical defenses against planktivorous fish. J. Exp. Mar. Biol. Ecol. 40:155–165.

    Google Scholar 

  • Luckenbach, M. W. and Orth, R. J. 1990. A chemical defense in Crustacea? J. Exp. Mar. Bio. Ecol. 137:79–87.

    Google Scholar 

  • Maldonado, M. and Uriz, M. J. 1998. Microrefuge exploitation by subtidal encrusting sponges: patterns of settlement and post-settlement survival. Mar. Ecol. Prog. Ser. 174:141–130.

    Google Scholar 

  • Martin, D., Nourichel, C. L., Uriz, M. J., Bhaud, M., and Duch \(e \circ\) ne, J. C. 2000. Ontogenic shifts in chemical defenses of the northwest Mediterranean Sea Eupolymnia nebulosa (Polychaeta, Terebellidae). Bull. Mar. Sci. 67:287–298.

    Google Scholar 

  • McEdward, L. R. 1997. Reproductive strategies of marine benthic invertebrates revisited: facultative feeding by planktotrophic larvae. Am. Nat. 150:48–72.

    Google Scholar 

  • McClintock, J. B. and Baker, B. J. 1997. Palatability and chemical defense of eggs, embryos and larvae of shallow-water Antarctic marine invertebrates. Mar. Ecol. Prog. Ser. 154:121–131.

    Google Scholar 

  • McClintock, J. B. and Baker, B. J. (eds.). 2001. Marine Chemical Ecology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • McClintock, J. B. and Vernon, J. D. 1990. Chemical defense in the eggs and embryos of Antarctic sea stars (Echinodermata). Mar. Biol. 105:4910–495.

    Google Scholar 

  • McClintock, J. B., Baker, B. J., and Steinberg, D. K. 2001. The chemical ecology of invertebrate meroplankton and holoplankton, pp. 195–225 in J. B. McClintock and B. J. Baker (eds.). CRC Press, Boca Raton, Florida. Marine Chemical Ecology.

    Google Scholar 

  • Morgan, S. G. 1995. Life and death in the plankton: larval mortality and adaptation, pp. 279–321, in L. R. McEdwards (e.d.). Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Orians, G. H. and Janzen, D. H. 1974. Why are embryos so tasty? Am. Nat. 108:581–592.

    Google Scholar 

  • Osman, R. W. and Whitlatch, R. B., 1995. Predation on early ontogenetic life stages and its effect on recruitment into a marine epifaunal community. Mar. Ecol. Prog. Ser. 117:111–126.

    Google Scholar 

  • Paul, V. J. 1992. Ecological Roles of Marine Natural Products. Comstock Publishing Associates, Ithaca, New York, 245, p.

    Google Scholar 

  • Pawlik, J. R. 1993. Marine invertebrate chemical defenses. Chem. Rev. 93:1911–1922.

    Google Scholar 

  • Provenza, F. D., Kimball, and B. A., Villalba, J. J. 2000. Roles of odor, taste, and toxicity in the food preferences of lambs: implications for mimicry in plants. Oikos 88:424–432.

    Google Scholar 

  • Roper, T. J. and Marples, N. M. 1997. Odour and colour as cues for taste-avoidance learning in domestic chicks. Anim. Behav. 53:1241–1250.

    Google Scholar 

  • Ruppert, E. E. and Barnes, R. D. 1994. Invertebrate Zoology. Saunders College Publishing, Phildelphia, Pennsylvania.

    Google Scholar 

  • Schimtt, T. M., Hay, M. E., and Lindquist, N. 1995. Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76: 107–123.

    Google Scholar 

  • Slattery, M., Hines, G. A., Starmer, J., and Paul, V. J. 1999. Chemical signals in gametogenesis, spawning, and larval settlement and defense of the soft coral Sinularia polydactyla. Coral Reefs 18:75–84.

    Google Scholar 

  • Stachowicz, J. J. and Lindquist., N. 1997. Chemical defense among hydroids on pelagic Sargassum: predator deterrence and absorption of solar UV radiation by secondary metabolites. Mar. Ecol. Prog. Ser. 155:115–126.

    Google Scholar 

  • Swihart, R. K. and Bryant, J. P. 2001. Importance of biogeography and ontogeny of woody plants in winter herbivory by mammals. J. Mammal. 82:1–21.

    Google Scholar 

  • Uriz, M. J., Turon, X., Becerro, M. A., and Galera, J. 1996. Feeding deterrence in sponges. The role of toxicity, physical defenses, energetic contents, and life-history stage. J. Exp. Mar. Biol. Ecol. 205:187–204.

    Google Scholar 

  • Vance, R. R. 1973. On reproductive strategies in marine benthic invertebrates. Am. Nat. 107:339–352.

    Google Scholar 

  • Young, C. M. and Bingham, B. L. 1987. Chemical defense and aposematic coloration in larvae of the ascidian Ecteinascidia turbinata. Mar. Biol. 96:539–544.

    Google Scholar 

  • Young, C. M. and Chia, F.-S. 1984. Microhabitat-associated variability in survival and growth of subtidal solitary ascidians during the first 21 days after settlement. Mar. Biol. 81:61–68.

    Google Scholar 

  • Young, C. M. and Chia, F.-S. 1987. Abundance and distribution of pelagic larvae as influences by predation, behavior, and hydrographic factors, pp. 385–463 in C. Giese and J. S. Pearse, (eds.). Reproduction in Marine Invertebrates, Vol. 9. Aberdeen University Press, Aberdeen, Scotland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindquist, N. Chemical Defense of Early Life Stages of Benthic Marine Invertebrates. J Chem Ecol 28, 1987–2000 (2002). https://doi.org/10.1023/A:1020745810968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020745810968

Navigation