Skip to main content
Log in

Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The effects of drought on radial growth of Pinussylvestris were investigated by comparing sites along hydricgradients. The gradients were located in Valais, an inner Alpine dry valley inSwitzerland, with each consisting of two site types, an extreme dry, xeric siteand a less dry, moderate site. The two site types were assigned tophytosociological associations within the Erico-Pinion. The investigationcovered the responses of tree growth to climate and particularly concentratedonintra-annual features of tree-rings such as earlywood/latewood ratio,intra-annual density fluctuations (IADFs) and traumatic tissues (TTs) as wellasthe sapwood/heartwood ratio. Radial growth differed according to the sitetypes,with trees on dry sites generally showing more missing rings, lower mean ringwidths, lower autocorrelation, higher mean sensitivities, reduced latewoodproportions and lower sapwood areas than trees on moderate sites. Therelationships between climate and tree-ring width, studied using responsefunction analysis, varied strongly between the site types within theErico-Pinion: Tree growth on dry sites was positively influenced byprecipitation at the end of the winter and the beginning of the growing seasonand negatively influenced by temperature in June. Winter precipitation waspositively correlated with radial growth, demonstrating its importance for thesuccessful root and shoot growth of the plants in spring on dry sites. Onmoderate sites, tree growth was less controlled by climate than by priorgrowth.The intra-annual density fluctuations (IADFs) provided a valuable means todifferentiate between the site types. In comparison to the moderate sites, thetrees on dry sites contained more IADFs, and their frequency was increased.Moist-cool conditions in the middle of the growing season were the triggeringfactor for IADFs on dry sites, whereas on moderate sites, there must be anadditional warm period in early summer in order to initiate IADFs. Most IADFswere found in latewood. We found no relationship between climate and traumatictissues (TTs). It is unclear whether other abiotic or biotic factors such aswounding by insects or birds are responsible for the development of TTs. Theassignment of these differences in tree growth behaviour to phytosociologicalassociations will enable a deeper understanding of the site types and willfacilitate the comparison with similar studies. Furthermore, the results can becombined with studies from other scientific disciplines concerning thesephytosociological associations. The ecological indicator values of thevegetation was a precise method for the distinction of site types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aeschimann D. and Heitz C. 1996. Index synonymique de la Flore de Suisse et territoires limitrophes. Centre du Réseau Suisse de Floristigue, Genève.

    Google Scholar 

  • Albrektson A. 1984. Sapwood basal area and needle mass of Scots pine (Pinus sylvestris L.) trees in Central Sweden. Forestry 57: 35–43.

    Google Scholar 

  • Benzler J.H., Finnern H., Müller W., Roeschmann G., Will K.H. and Wittmann O. 1982. Bodenkundliche Kartieranleitung. Arbeitsgruppe Bodenkunde, Hannover.

    Google Scholar 

  • Blasing T.J., Stahle D.W. and Duvick D.N. 1988. Tree-ring based reconstruction of annual precipitation in the South-central United States from 1750 to 1980. Water Resour. Res. 24: 163–171.

    Google Scholar 

  • Bräker O.U. 1981. Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhözern und sein Ausgleich. Mitt. Forstl. Bundes-Vers.anst. Wien 142: 75–102.

    Google Scholar 

  • Bräker O.U. 1996. Growth trends of Swiss forests: Tree-ring data. Case study Toppwald, In: Spiecker H., Mielikäinen K., Köhl M. and Skoovsgaard J.P. (eds), Growth Trends in European Forests. Springer-Verlag, New York, pp. 199–217.

    Google Scholar 

  • Braun-Blanquet J. 1961. Die inneralpine Trockenvegetation. Fisher, Stuttgart.

    Google Scholar 

  • Braun-Blanquet J. 1964. Pflanzensoziologie. 3rd edn. Springer, Wien.

    Google Scholar 

  • Cherubini P., Piussi P. and Schweingruber F.H. 1996. Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Can. J. For. Res. 26: 991–1001.

    Google Scholar 

  • Climent J., Gil L. and Pardos J. 1993. Heartwood and sapwood developement and its relationship to growth and environment in Pinus canariensis Chr.Sm ex DC. For. Ecol. Manage. 59: 165–174.

    Google Scholar 

  • Camarero J.J., Guerrero J. and Gutiérrez E. 1998. Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct. Alp. Res. 30: 1–10.

    Google Scholar 

  • Czokajlo D., Wink R.A., Warren J.C., and Teale S.A. 1997. Growth reduction of Scots pine, Pinus sylvestris, caused by the larger pine shoot beetle, Tomicus piniperda (Coleoptera, Scolytidae), in New York State. Can. J. For. Res. 27: 1394–1397.

    Google Scholar 

  • D'Arrigo R.D. and Jacoby G.C. 1991. A 1000-year record of winter precipitation from northwestern New Mexico, USA: A reconstruction from tree-rings and its relation to El Nino and the Southern Oscillation. Holocene 1: 95–101.

    Google Scholar 

  • De Kort I. 1986. Wood structure and growth ring width of vital and non-vital Douglas-fir (Pseudotsuga menziesii) from a single stand in the Netherlands. IAWA Bull. 7: 309–318.

    Google Scholar 

  • De Kort I. 1993. Wood production and latewood percentage of Douglas-fir from different stands and vitality classes. Can. J. For. Res. 23: 1480–1486.

    Google Scholar 

  • De Kort I., Loeffen V. and Baas P. 1991. Ring width, density and wood anatomy of Douglas fir with different crown vitality. IAWA Bull. 12: 453–465.

    Google Scholar 

  • Ehlers W. 1996. Wasser in Boden und Pflanze. Ulmer, Stuttgart.

    Google Scholar 

  • Engler A. 1903. Untersuchungen über das Wurzelwachstum der Holzarten. Mitt. Eidgenöss. Forsch. anst. Wald Schnee Landsch 7: 24–317.

    Google Scholar 

  • Fiedler F. and Wenk G. 1973. Der jahreszeitliche Ablauf des Dickenzuwachses von Fichten und Kiefern und seine Abhängigkeit von meteorologischen Faktoren. Wiss. Z. Techn. Univers. Dresden 22: 531–535.

    Google Scholar 

  • Filion L., Payette S., Gauthier L. and Boutin Y. 1986. Light rings in subarctic conifers as a dendrochronological tool. Quat. Res. 26: 272–279.

    Google Scholar 

  • Foré S., Vankat J.L. and Schaefer R.L. 1997. Temporal variations in the woody understory of an old growth Fagus-Acer forest and implications for understory recruitment. J. Veg. Sci. 8: 607–614.

    Google Scholar 

  • Frey H. 1934. Die Walliser Felsensteppe. PhD Dissertation, University of Zürich.

  • Fritts H.C., Smith D.G., Cardis J.W. and Budelsky C.A. 1965. Tree-ring characteristics along a vegetation gradient in Northern Arizona. Ecology 46: 393–401.

    Google Scholar 

  • Fritts H.C. 1974. Relationships of ring widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol. Monogr. 44: 411–440.

    Google Scholar 

  • Fritts H.C., Blasing T.J., Hayden B.P. and Kutzbach J.E. 1971. Multivariate technics for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. J. Appl. Meteorol. 10: 845–864.

    Google Scholar 

  • Fritts H.C. and Shashkin A.V. 1995. Modelling tree-ring structure as related to temperature, precipitation and day length. In: Lewis T.E. (ed.), Tree Rings as Indicators of Ecosystem Health. CRC, Boca Raton, pp. 17–57.

    Google Scholar 

  • Fritts H.C. 1976. Tree rings and climate. Academic press, London.

    Google Scholar 

  • Glerum C. and Farrar J.L. 1966. Frost ring formation in the stems of some coniferous species. Can. J. Bot. 44: 879–886.

    Google Scholar 

  • Glock W.S. 1955. Tree growth II. Growth rings and climate, Bot. Rev. 21: 73–188.

    Google Scholar 

  • Grissino-Mayer H.D. 1996. A 2129-year reconstruction of precipitation for northwestern New Mexico, USA. In: Dean J.S., Meko D.M. and Swetnam T.W. (eds), Tree Rings, Environment and Humanity. Proceedings of the International Conference in Tucson., Arizona, pp. 191–204.

  • Guiot J. 1991. The bootstrapped response function. Tree-Ring Bull. 51: 39–41.

    Google Scholar 

  • Gutierrez E. 1989. Dendroclimatological study of Pinus sylvestris L. in Southern Catalonia (Spain). Tree-Ring Bull. 49: 1–9.

    Google Scholar 

  • Henhappel G. 1965. Ueber die Stärkeänderung der peripheren Stammzone von Waldbäumen im Jahresablauf. PhD Dissertation, University of Freiburg.

  • Hughes M.K. and Graumlich L.J. 1996. Multimillenial dendroclimatic studies from the western United States. In: Jones P.D., Bradley R.S. and Jouzel J. (eds), Climatic Variations and Forcing Mechanisms of the last 2000 yearsNATO ASI Series 41., pp. 109–124.

  • Kienast F., Schweingruber F.H., Braeker O.U. and Schaer E. 1987. Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can. J. For. Res. 17: 683–696.

    Google Scholar 

  • Kleinschmidt R., Hentschke I. and Rothe G.M. 1998. Effect of season and soil treatments on carbohydrate concentrations in Norway spruce (Picea abies) mycorrhizae. Tree Physiology 18: 325–332.

    Google Scholar 

  • Kozlowski T.T., Kramer P.J. and Pallardy S.G. 1991. The Physiological Ecology of Woody Plants. Academic Press, San Diego.

    Google Scholar 

  • Kramer P.J. 1983. Water Relations of Plants. Academic Press, New York.

    Google Scholar 

  • Kraus J.F. and Spurr S.H. 1961. Relationship of soil moisture to the springwood-summerwood transition in southern Michigan Red pine. J. For. 59: 510–511.

    Google Scholar 

  • Krause C. 1991. Ganzbaumanalyse von Eiche, Buche, Kiefer und Fichte mit dendroökologischen Methoden. PhD Dissertation, University of Hamburg.

  • Krause C. and Eckstein D. 1993. Dendrochronology of roots. Dendrochronologia 11: 9–23.

    Google Scholar 

  • Kuhn N. 1973. Frequenzen von Trockenperioden und ihre ökologische Bedeutung. Vierteljahrsschr, Nat. forsch. Ges. Zör. 118: 257–298.

    Google Scholar 

  • Kuo M.-L. and McGinnes E.A. 1973. Variation of anatomical structure of false rings in Eastern red cedar. Wood Sci. Technol. 5: 205–210.

    Google Scholar 

  • Kutiel P. and Naveh Z. 1987. The effect of fire on nutrients in a pine forest soil. Plant Soil 104: 269–274.

    Google Scholar 

  • LaMarche V.C. and Hirschboeck K.K. 1984. Frost rings in trees as records of major volcanic eruptions. Nature 307: 121–126.

    Google Scholar 

  • Landolt E. 1977. Oekologische Zeigerwerte zur Schweizer Flora. Veröff. Geobot. Inst. Eidgenöss. Tech. HochschStift. Rübel Zür 64: 208.

    Google Scholar 

  • Larcher W. 1995. Physiological Plant Ecology. 3rd edn. Springer-Verlag, Berlin.

    Google Scholar 

  • Leibundgut H. 1984. Die Waldpflege. Verlag Haupt, Bern.

    Google Scholar 

  • Leibundgut H., Davis S. and Richard F. 1963. Untersuchungen über das Wurzelwachstum verschiedener Baumarten. Schweiz. Z. Forstwes. 114: 621–646.

    Google Scholar 

  • Lepage H. and Bégin Y. 1996. Tree-ring dating of extreme water level events at Lake Bienville, subarctic Quebec, Canada. Arct. Alp. Res. 28: 77–84.

    Google Scholar 

  • Leuschner H.H. and Schweingruber F.H. 1996. Dendroökologische Klassifizierung und Auswertung häufig auftretender intraanueller holzanatomischer Merkmale bei Eichen und Kiefern. Dendrochronologia 14: 273–285.

    Google Scholar 

  • Lingg W. 1986. Dendroökologische Studien an Nadelbäumen im alpine Trockental Wallis (Schweiz). Mitt. Eidgenöss. Anst. forstl. Vers.wes. 62: 331–466.

    Google Scholar 

  • Mäkelä A. and Albrektson A. 1992. An analysis of the relationship between foliage biomass and crown surface area in Pinus sylvestris in Sweden. Scand. J. For. Res. 7: 297–307.

    Google Scholar 

  • Meko D.M., Stockton C.W. and Boggess W.R. 1980. A tree-ring reconstruction of drought in southern California. Water Res. Bull. 16: 594–600.

    Google Scholar 

  • Michaelsen J., Haston L. and Davis F.W. 1987. 400 years of central California precipitation variability reconstructed from tree-rings. Water Res. Bull. 23: 809–818.

    Google Scholar 

  • Müller H.N. 1980. Jahrringwachstum und Klimafaktoren Angewandte Pflanzensoziologie. Veröff. Bundesversuchsanst. Wien. Oesterreichischer Agrarverlag Wien, Heft 25.

  • Niederer M., Pankow W. and Wiemken A. 1992. Seasonal changes of soluble carbohydrates in mycorrhizas of Norway spruce and changes induced by exposure to frost and desiccation. Eur. J. For. Path. 22: 291–299.

    Google Scholar 

  • Oberhuber W., Stumböck M. and Kofler W. 1998. Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13: 19–27.

    Google Scholar 

  • Orwig D.A. and Abrams M.D. 1997. Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11: 474–484.

    Google Scholar 

  • Osborn T.J., Briffa K.R. and Jones P.D. 1999. Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time series. Dendrochronologia 15: 1–10.

    Google Scholar 

  • Ozenda P. 1988. Die Vegetation der Alpen im europäischen Gebirgsraum. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Pilcher J.R. 1990. Sample preparation, cross-dating and measurement. In: Cook E.R. and Kairiukstis L.A. (eds), Methods of Dendrochronology. Applications in the Environmental Sciences. Kluwer Academic, Dordrecht, pp. 40–51.

    Google Scholar 

  • Plumettaz Clot A.C. 1988. Phyto-écologie des Pinèdes valaisannes et contribution à la taxonomie du genre Pinus. PhD Dissertation, University of Lausanne.

  • Polomski J. and Kuhn N. 1998. Wurzelsysteme. Eidg. Forsch. Anstalt Für Wald, Schnee und Landschaft Haupt Verlag, Bern.

    Google Scholar 

  • Reid R.W. and Watson J.A. 1966. Sizes, distributions, and numbers of vertical resin ducts in Lodgepole pine. Can. J. For. Res. 44: 519–525.

    Google Scholar 

  • Rinn F. 1996. TSAP-Reference Manual. Frank Rinn, Heidelberg.

    Google Scholar 

  • Riek W., Wessolek G. and von Lührte A. 1995. Wasserhaushalt und Dickenwachstum von Kiefern (Pinus sylvestris) im Raum Berlin. Allg. Forst-und Jagdzeitung 166: 138–144.

    Google Scholar 

  • Rigling A. and Schweingruber F.H. 1997. Entwicklung waldföhrenreicher Wälder im Gebiet Brienz-Wiesen (GR). Schweiz. Z. Forstwes. 148: 173–196.

    Google Scholar 

  • Rigling A. and Cherubini P. 1999. Wieso sterben die Waldföhren im Telwald bei Visp? Schweiz. Z. Forstwes. 150: 113–131.

    Google Scholar 

  • Rolland C., Michalet R., Desplanque C., Petetin A. and Aimé S. 1999. Ecological requirements of Abies alba in the French Alps derived from dendro-ecological analysis. J. Veg. Sci. 10: 297–306.

    Google Scholar 

  • Ryan M.G. and Yoder B.J. 1997. Hydraulic limits to tree height and tree growth. BioScience 47: 235–242.

    Google Scholar 

  • Sachs L. 1978. Angewandte Statistik. Springer Verlag, Berlin.

    Google Scholar 

  • Sannikov S.N. and Goldammer J.G. 1996. Fire ecology of pine forests of northern Eurasia. In: Goldammer J.G. and Furyaev V. (eds), Fire in Ecosystems of Boreal Eurasia. Kluwer Academic, Dordrecht, pp. 151–167.

    Google Scholar 

  • Santantonio D. and Hermann R.K. 1985. Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon. Ann. Sci. for. 42: 113–142.

    Google Scholar 

  • Savage M. and Swetnam T.W. 1990. Early 19th-century fire decline following sheep pasturing in a Navajo ponderosa pine forest. Ecology 71: 2374–2378.

    Google Scholar 

  • Scheffer F. and Schachtschabel P. 1992. Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart.

    Google Scholar 

  • Schulman E. 1938. Classification of false annual rings in Monterey pine. Tree-ring Bull. 4: 4–7.

    Google Scholar 

  • Schulman E. 1939. Classification of false annual rings in West Texas pines. Tree-ring Bull. 6: 11–13.

    Google Scholar 

  • Schweingruber F.H. 1980. Dichteschwankungen in Jahrringen von Nadelhölzern in Beziehung zu klimatisch-ökologischen Faktoren, oder das Problem der falschen Jahrringe. Ber. Eidg. Anst. Forstl. Versuchswes. 213: 1–35.

    Google Scholar 

  • Schweingruber F.H. 1996. Tree rings and environment - Dendroecology. Verlag Haupt, Bern.

    Google Scholar 

  • Sellin A. 1994. Sapwood-heartwood proportion related to tree diameter, age, and growth rate in Picea abies. Can. J. For. Res. 24: 1022–1028.

    Google Scholar 

  • Sellin A. 1996. Sapwood amount in Picea abies (L.) Karst. determined by tree age and radial growth rate. Holzforschung 50: 291–296.

    Google Scholar 

  • Serre-Bachet F. and Tessier L. 1990. Response function analysis for ecological study. In: Cook E.R. and Kairiukstis L.A. (eds), Methods of Dendrochronology. Applications in the Environmental Sciences. Kluwer Academic, Dordrecht, pp. 247–258.

    Google Scholar 

  • Soil map of the world, revised legend 1988. World Soil Resources Report 60. Food and Agriculture Organization of the United Nations, Rome.

  • Stöckli V. and Schweingruber F.H. 1996. Tree rings as indicators of ecological processes: the influence of competition, frost, and water stress on tree growth, size, and survival. PhD Dissertation, University of Basel.

  • Swetnam T.W. 1993. Fire history and climate change in giant sequoia groves. Science 262: 885–889.

    Google Scholar 

  • Tessier L. 1982. Analyse dendroclimatologique comparée de six populations de Pinus sylvestris L. dans la Drôme. Ecol. Mediterr. 8: 167–184.

    Google Scholar 

  • Tessier L., Guibal F. and Schweingruber F.H. 1997. Research strategies in dendroecology and dendroclimatology in mountain environments. Clim. Change 36: 499–517.

    Google Scholar 

  • Turner H. and Streule A. 1983. Wurzelwachstum und Sprossentwicklung junger Koniferen im Klimastress der alpinen Waldgrenze, mit Berücksichtigung von Mikroklima, Photosynthese und Stoffproduktion. In: Böhm W., Kutschera L. and Lichtenegger E. (eds), Wurzelökologie und ihre Nutzanwendung. Proceedings Int. Symposium., Irdning, pp. 617–625.

  • Vanninen P., Ylitalo H., Sievänen R. and Mäkelä A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10: 231–238.

    Google Scholar 

  • Venables W.N. and Ripley B.D. 1998. Modern Applied Statistics with S-PLUS. Springer-Verlag, New York.

    Google Scholar 

  • Villalba R. and Veblen T.T. 1996. A Tree-ring record of dry springwet summer events in the forest-steppe ecotone, Northern Patagonia, Argentina. In: Dean J.S., Meko D.M. and Swetnam T.W. (eds), Tree Rings, Environment and Humanity, In:, Radio-carbon, pp. 107–116.

  • Vogt K.A., Edmonds R.L., Grier C.C. and Piper S.R. 1980. Seasonal changes in mycorrhizal and fibrous-textured root biomass in 23-and 180-year-old Pacific silver fir stands in western Washington. Can. J. For. Res. 10: 523–529.

    Google Scholar 

  • Walter H. and Lieth H. 1960. Klimadiagramm Weltatlas. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Warren W.G. 1980. On removing the growth trend from dendrochronological data. Tree-Ring Bull. 40: 35–44.

    Google Scholar 

  • Wigley T.M.L., Briffa K.R. and Jones P.D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Met. 23: 201–213.

    Google Scholar 

  • Wimmer R. and Grabner M. 1997. Effects of climate on vertical resin duct density and radial growth of Norway spruce [Picea abies (L.) Karst.]. Trees 11: 271–276.

    Google Scholar 

  • Wimmer R. and Strumia G. 1998. Spring drought indicated by intra-annual density fluctuations in Pinus nigra. In: Stravinskiene V. and Juknys R. (eds), Dendrochronology and Environmental Trends. Proceedings of an International Conference. Vytautas Magnus University, Kaunas, pp. 139–147.

  • Zweifel R. 1999. The rhythm of trees - Water storage dynamics in subalpine Norway spruce. PhD Dissertation, Swiss Fed. Inst. of Technology, Zürich.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigling, A., Bräker, O., Schneiter, G. et al. Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecology 163, 105–121 (2002). https://doi.org/10.1023/A:1020355407821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020355407821

Navigation