Skip to main content
Log in

Dynamical Localization for the Random Dimer Schrödinger Operator

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the one-dimensional random dimer model, with Hamiltonian H ω =Δ+V ω , where for all x\(\mathbb{Z}\), V ω(2x)=V ω(2x+1) and where the V ω(2x) are i.i.d. Bernoulli random variables taking the values ±V, V>0. We show that, for all values of Vand with probability one in ω, the spectrum of His pure point. If V≤1 and V≠1/\(\sqrt 2\), the Lyapunov exponent vanishes only at the two critical energies given by EV. For the particular value V=1/\(\sqrt 2\), respectively, V=\(\sqrt 2\), we show the existence of new additional critical energies at E=±3/\(\sqrt 2\), respectively, E=0. On any compact interval Inot containing the critical energies, the eigenfunctions are then shown to be semi-uniformly exponentially localized, and this implies dynamical localization: for all q>0 and for all ψ\(\ell\) 2(\(\mathbb{Z}\)) with sufficiently rapid decrease

$${\mathop {\sup }\limits_t} r_{\psi ,I}^{\left( q \right)} {\kern 1pt} \left( t \right): = {\mathop {\sup }\limits_t} \left\langle {P_I \left( {H\omega } \right)\psi _t ,\left| X \right|^q P_I \left( {H\omega } \right)\psi _t } \right\rangle < \infty $$

Here \(\psi _t = e^{- iH_{\omega ^t}} \psi\), and P I(H ω) is the spectral projector of H ωonto the interval I. In particular, if V>1 and V\(\sqrt 2\), these results hold on the entire spectrum [so that one can take I=σ(H ω)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivation, Commun. Math. Phys. 157:245–278 (1993); M. Aizenman, Localization at weak disorder: Some elementary bounds, Rev. Math. Phys. 6:1163–1182 (1994).

    Google Scholar 

  2. Bougerol and R. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators(Birkhäuser, 1985).

  3. A. Bovier, Perturbation theory for the random dimer model, J. Phys. A 25:1021 (1992).

    Google Scholar 

  4. R. Carmona, A. Klein, and F. Martinelli, Anderson localization for bernoulli and other singular potentials, Commun. Math. Phys. 108:41–66 (1987).

    Google Scholar 

  5. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operator(Birkhäuser, 1990).

  6. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators(Springer-Verlag, 1987).

  7. D. Damanik and P. Stollmann, Preprint (1999).

  8. R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69:153–200 (1996).

    Google Scholar 

  9. A. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124:285–299 (1989).

    Google Scholar 

  10. D. H. Dunlap, H.-L. Wu, and P. Phillips, Absence of localization in a random Dimer model, Phys. Rev. Lett. 65:88 (1990).

    Google Scholar 

  11. S. N. Evangelou and E. N. Economou, Reflectionless modes in chains with large-size homogeneous impurities, J. Phys. A 26:2803–2813 (1993).

    Google Scholar 

  12. J. C. Flores and M. Hilke, Absence of localization in disordered systems with local correlation, J. Phys. A 26:L1255–1259 (1993).

    Google Scholar 

  13. F. Germinet, Dynamical localization II with an application to the almost Mathieu operator, J. Stat Phys. 95:273–286 (1999).

    Google Scholar 

  14. F. Germinet and S. De Bièvre, Dynamical localization for discrete and continuous random Schrödinger operators, Commun. Math. Phys. 194:323–341 (1998).

    Google Scholar 

  15. F. Germinet and S. De Bièvre, Localisation dynamique et opérateurs de Schrödinger aléatoires, C. R. Acad. Sci. Paris 326(I):261–264 (1998).

    Google Scholar 

  16. F. Germinet and A. Klein, in preparation; F. Germinet and S. Jitomirskaya, Strong dynamical localization for the almost Mathieu model, Preprint, january 2000 or see mp_arc 00-44.

  17. S. Gangopadhyay and A. K. Sen, The resonance structure in a random dimer model, J. Phys.: Condens. Matter 4:9939–9954 (1992).

    Google Scholar 

  18. B. Iversen, Hyperbolic Geometry(London Mathematical Society, Student Texts 25, 1992).

  19. I. Lifshits, S. Gredeskul, and L. Pastur, Introduction to the Theory of Disordered Systems(Springer, Berlin, 1986).

    Google Scholar 

  20. M. Loève, Probability Theory(Van Nostrand Company, Toronto/New York/London, 1963).

    Google Scholar 

  21. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators(Springer-Verlag, 1992).

  22. H.-L. Wu, W. Goff, and P. Phillips, Insulator-metal transitions in random lattices containing symmetrical defects, Phys. Rev. B 45:1623–1628 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bièvre, S., Germinet, F. Dynamical Localization for the Random Dimer Schrödinger Operator. Journal of Statistical Physics 98, 1135–1148 (2000). https://doi.org/10.1023/A:1018615728507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018615728507

Navigation