Skip to main content
Log in

Temperature and Base Sequence Dependence of 2-Aminopurine Fluorescence Bands in Single- and Double-Stranded Oligodeoxynucleotides

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence excitation spectra of 2-aminopurine (2AP) incorporated into single-stranded DNA di- and trinucleotides, as well as into single- and double-stranded pentanucleotides, have been measured as a function of temperature from 5 to 65 °C. Spectral shifts have been precisely quantitated through difference spectroscopy and spectral fits. G(2AP)C and C(2AP)G oligonucleotides have relatively blue-shifted excitation spectra (especially the former) compared to the 2AP free base. The position of the excitation peak of 2AP free base is temperature independent, those of (2AP)T, G(2AP)C, C(2AP)G and TT(2AP)TT shift about 0.4 nm to the blue from 5 to 65 °C, though the spectra of the G-C-containing oligomers also change shape. The temperature dependence of the A(2AP)T spectral position is 2.5-times stronger, and just rises to that of the free base at high temperature. On the other hand, the decrease of yield with increasing temperature is smallest for A(2AP)T, even compared to the free base. The dominant effect when A neighbors 2AP appears to be temperature-dependent stacking with accompanying energy transfer, while in G- and C-containing trinucleotides a temperature-independent interaction keeps the 2AP excitation spectrum blue-shifted. The effect of double strand formation appears to be small compared to stacking interactions. These spectra can be useful in identifying base neighbors and structures of 2AP in unknown 2AP-labeled DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Hagag, E. R. Birnbaum, and D. W. Darnall (1983) Biochemistry 22, 2420-2427.

    Google Scholar 

  2. J. R. Lakowicz, I. Gryczynski, W. Wiczk, G. Laczko, F. C. Prendergast, and M. L. Johnson (1990) Biophys. Chem. 36, 99-115.

    Google Scholar 

  3. P. Wu and L. Brand (1994) Anal. Biochem. 218, 1-13.

    Google Scholar 

  4. P. R. Selvin (1995) Methods Enzymol. 246, 300-334.

    Google Scholar 

  5. M. P. Lillo, B. K. Szpikowska, M. T. Mas, J. D. Sutin, and J. M. Beechem (1997) Biochemistry 36(37), 11273-11281.

    Google Scholar 

  6. W. J. Dong, J. Xing, M. Villain, M. Hellinger, J. M. Robinson, M. Chandra, R. J. Solaro, P. K. Umeda, and H. C. Cheung (1999) J. Biol. Chem. 274(44), 31382-31390.

    Google Scholar 

  7. O. Tcherkasskaya and O. B. Ptitsyn (1999) Protein Eng. 12(6), 485-490.

    Google Scholar 

  8. M. Li, L. G. Reddy, R. Bennett, N. D. Silva, Jr., L. R. Jones, and D. D. Thomas (1999) Biophys. J. 76(5), 2587-2599.

    Google Scholar 

  9. W. J. Dong, J. M. Robinson, J. Xing, P. K. Umeda, and H. C. Cheung (2000) Protein Sci. 9(2), 280-289.

    Google Scholar 

  10. R. A. Keller, L. A. Bottomly, and N. J. Dovichi (eds.) (1992) in R. A. Keller, L. A. Bottomly, and N. J. Divichi (Eds.), Advances in DNA Sequencing Technology, SPIE, Los Angeles, Vol. 1891.

    Google Scholar 

  11. S. C. Hung, R. A. Mathies, and A. N. Glazer (1998) Anal. Biochem. 255(1), 32-38.

    Google Scholar 

  12. A. Van Orden, H. Cai, P. M. Goodwin, and R. A. Keller (1999) Anal. Chem. 71(11), 2108-2116.

    Google Scholar 

  13. M. Sauer, B. Angerer, K. T. Han, and C. Zander (1999) Phys. Chem. Chem. Phys. 1(10), 2471-2477.

    Google Scholar 

  14. S. McWhorter and S. A. Soper (2000) Electrophoresis 21(7), 1267-1280.

    Google Scholar 

  15. A. Ujvari and C. T. Martin (1996) Biochemistry 35(46), 14574-14582.

    Google Scholar 

  16. Y. Jia, A. Kumar, and S. S. Patel (1996) J. Biol. Chem. 271(48), 30451-30458.

    Google Scholar 

  17. B. W. Allan, N. O. Reich, and J. M. Beechem (1999) Biochemistry 38(17), 5308-5314.

    Google Scholar 

  18. L. B. Bloom, M. R. Otto, J. M. Beechem, and M. F. Goodman (1993) Biochemistry 32, 11247-11258.

    Google Scholar 

  19. L. B. Bloom, M. R. Otto, R. Eritja, L. J. Reha-Krantz, M. F. Goodman, and J. M. Beechem (1994) Biochemistry 33, 7576-7586.

    Google Scholar 

  20. K. D. Raney, L. C. Sowers, D. P. Millar, and S. J. Benkovic (1994) Proc. Natl. Acad. Sci. USA 91, 6644-6648.

    Google Scholar 

  21. B. W. Allan and N. O. Reich (1996) Biochemistry 35(47), 14757-14762.

    Google Scholar 

  22. J. M. Beechem, M. R. Otto, L. B. Bloom, R. Eritja, L. J. Reha-Krantz, and M. F. Goodman (1998) Biochemistry 37(28), 10144-10155.

    Google Scholar 

  23. M. R. Otto, L. B. Bloom, M. F. Goodman, and J. M. Beechem (1998) Biochemistry 37(28), 10156-10163.

    Google Scholar 

  24. L. J. Reha-Krantz, L. A. Marquez, E. Elisseeva, R. P. Baker, L. B. Bloom, H. B. Dunford, and M. F. Goodman (1998) J. Biol. Chem. 273(36), 22969-22976.

    Google Scholar 

  25. W. C. Lam, E. J. Van der Schans, L. C. Sowers, and D. P. Millar (1999) Biochemistry 38(9), 2661-2668.

    Google Scholar 

  26. M. Aida, K. Yamane, and C. Nagata (1986) Mutat. Res. 173(1), 49-54.

    Google Scholar 

  27. W. P. Diver and D. M. Woodcock (1989) Mutagenesis 4(4), 302-305.

    Google Scholar 

  28. G. Speit, S. Garkov, S. Haupter, and B. Koberle (1990) Mutagenesis 5(2), 185-190.

    Google Scholar 

  29. L. A. Marquez and L. J. Rehakrantz (1996) J. Biol. Chem. 271(46), 28903-28910.

    Google Scholar 

  30. M. F. Goodman and K. D. Fygenson (1998) Genetics 148(4), 1475-1482.

    Google Scholar 

  31. D. Xu (1996) University of Alabama at Birmingham.

  32. T. M. Nordlund, D. Xu, and K. O. Evans (1993) Biochemistry 32, 12090-12095.

    Google Scholar 

  33. T. M. Nordlund, D. Xu, and K. Evans (1994) Proc. SPIE 2137, 634-643.

    Google Scholar 

  34. S. O. Kelley and J. K. Barton (1999) Science 283(5400), 375-381.

    Google Scholar 

  35. P. O. Lycksell, A. Gräslund, F. Claesens, L. W. McLaughlin, U. Larsson, and R. Rigler (1987) Nucleic Acids Res. 15(21), 9011-9025.

    Google Scholar 

  36. A. Gräslund, F. Claesens, L. W. McLaughlin, P.-O. Lycksell, U. Larsson, and R. Rigler (1987) In A. Ehrenberg, R. Rigler, A. Gräslund, and L. Nilsson (Eds.), Structure, Dynamics and Function of Biomolecules, Springer-Verlag, Berlin, pp. 201-207.

    Google Scholar 

  37. T. M. Nordlund, S. Andersson, L. Nilsson, R. Rigler, A. Gräslund, and L. W. McLaughlin (1989) Biochemistry 28(23), 9095-9103.

    Google Scholar 

  38. P. G. Wu, T. M. Nordlund, B. Gildea, and L. W. McLaughlin (1990) Biochemistry 29(27), 6508-14.

    Google Scholar 

  39. K. Evans, D.-G. Xu, Y.-S. Kim, and T. M. Nordlund (1992) J. Fluoresc. 2(4), 209-216.

    Google Scholar 

  40. D. Xu, K. O. Evans, and T. M. Nordlund (1994) Biochemistry 33, 9592-9599.

    Google Scholar 

  41. D. P. Millar and T. E. Carver (1994) Proc. SPIE 2137, 686-695.

    Google Scholar 

  42. D. P. Millar (1996) Curr. Opin. Struct. Biol. 6(3), 322-326.

    Google Scholar 

  43. D. C. Ward, E. Reich, and L. Stryer (1969) J. Biol. Chem. 244, 1228-1237.

    Google Scholar 

  44. A. Kawski, B. Bartoszewicz, I. Gryczynski, and M. Krajewski (1975) Bull. Acad. Polonaise Sci. (Ser. Sci. Math. Astr. Phys.) XXIII, 367-372.

    Google Scholar 

  45. A. Bierzynski, H. Kozlowska, and K. L. Wierzchowski (1977) Biophys. Chem. 6, 223-229.

    Google Scholar 

  46. J. D. Puglisi and I. J. Tinoco (1989) in J. E. Dahlberg and J. N. Abelson (Eds.), RNA Processing Part A. General Methods, Academic Press, San Diego, Vol. 180, pp. 304-325.

    Google Scholar 

  47. D. Xu and T. M. Nordlund (2000) Biophys. J. 78(2), 1042-1058.

    Google Scholar 

  48. W. Knox, T. M. Nordlund, and G. Mourou (1982) Appl. Phys. B 28, 174-175.

    Google Scholar 

  49. D. Xu, K. O. Evans, and T. M. Nordlund (1994) Biochemistry 33(32), 9592-9599.

    Google Scholar 

  50. J. Beechem and L. Brand (1985) Ann. Rev. Biochem. 54, 43-71.

    Google Scholar 

  51. J. H. Sommer, T. M. Nordlund, M. McGuire, and G. McLendon (1986) J. Phys. Chem. 90, 5173-5178.

    Google Scholar 

  52. E. R. Henry (1997) Biophys. J. 72(2), 652-673.

    Google Scholar 

  53. N. Le Novere (2000) http://bioweb.pasteur.fr/seqanal/interfaces/melting.html.

  54. T. M. Nordlund, D. Xu, and K. O. Evans (1993) Biochemistry 32(45), 12090-12095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, M., Lee, M.J., Evans, K.O. et al. Temperature and Base Sequence Dependence of 2-Aminopurine Fluorescence Bands in Single- and Double-Stranded Oligodeoxynucleotides. Journal of Fluorescence 11, 23–32 (2001). https://doi.org/10.1023/A:1016643531270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016643531270

Navigation