Skip to main content
Log in

A Model for Third Sound Attenuation in Thick 4He Films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Third sound attenuation in thick 4He films has been observed to be much greater than predictions based on known mechanisms. We propose a possible mechanism for this observed high attenuation. Pinned vortices, possibly created when the superfluid transition is traversed, undergo driven oscillations in the third sound wave flow field. The dissipation is caused by two related effects. The first is due to the mutual friction between the vortex cores and the normal component. The second, larger contribution, is due to the drag experienced by a vortex-induced surface dimple. Variations in vortex density explain quite naturally the observed lack of reproducibility in attenuation measurements. A vortex density on the order of 1017m−2 is required to account for dissipation reported in several experiments. We discuss the temperature, frequency and thickness dependence of the dissipation. The proposed model is also applicable to a vortex contribution to fourth sound attenuation. If third sound attenuation is indeed a signature of a very dense array of pinned vorticity, then our conception of a homogeneous superfluid film needs considerable alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. W. F. Everitt, K. R. Atkins, and A. Denenstein, Detection of third sound in liquid helium films, Phys. Rev. Lett. 8, 161 (1962).

    Google Scholar 

  2. C. W. F. Everitt, K. R. Atkins, and A. Denenstein, Third sound in liquid helium films, Phys. Rev. A 136, 1494 (1964).

    Google Scholar 

  3. A. M. R. Schecter, R. W. Simmonds, R. E. Packard, and J. C. Davis, Observation of “third sound” in superfluid He-3, Nature 396, 554 (1998).

    Google Scholar 

  4. K. R. Atkins, Third and fourth sound in liquid helium II, Phys. Rev. 113, 962 (1959).

    Google Scholar 

  5. D. Bergman, Hydrodynamics and third sound in thin He II films, Phys. Rev. 188, 370 (1969).

    Google Scholar 

  6. D. J. Bergman, Third sound in superfluid helium films of arbitrary thickness, Phys. Rev. A 3, 2058 (1971).

    Google Scholar 

  7. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transition in two-dimensional systems, J. Phys. C 6, 1181 (1973).

    Google Scholar 

  8. H. van Beelen and G. Bannink, The propagation of 3rd-sound in helium films, Physica B&C 122, 151 (1983).

    Google Scholar 

  9. P. W. Brouwer, W. A. Draisma, H. van Beelen, and R. Jochemsen, On the propagation of third sound in 4He films, Physica B 215, 135 (1995).

    Google Scholar 

  10. T. G. Wang and I. Rudnick, Anomalous attenuation of third sound, J. Low Temp. Phys. 9, 425 (1972).

    Google Scholar 

  11. K. L. Telschow, R. K. Galkiewicz, and R. B. Hallock, Experiments on the attenuation of third sound in saturated superfluid helium films, Phys. Rev. B 14, 4883 (1976).

    Google Scholar 

  12. K. C. Harvey and A. L. Fetter, Free surface of a rotating superfluid, J. Low Temp. Phys. 11, 473 (1973).

    Google Scholar 

  13. F. M. Ellis and H. Luo, Low temperature exponential and liner free decay of 3rd sound resonances, Physica B 169, 521 (1991).

    Google Scholar 

  14. F. M. Ellis and L. Li, Quantum swirling of superfluid helium films, Phys. Rev. Lett. 71, 1577 (1993).

    Google Scholar 

  15. F. M. Ellis, L. Keeler, and C. Wilson, Pinned vortex density in He-4 films produced and detected by third sound resonances, Physica B 194–196, 673 (1994).

    Google Scholar 

  16. K. W. Schwarz, Charge-carrier mobilities in liquid helium at the vapor pressure, Phys. Rev. A 6, 873 (1972).

    Google Scholar 

  17. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, Friction on quantized vortices in helium II. A review, J. Low Temp. Phys. 52, 189 (1983).

    Google Scholar 

  18. W. D. McCormick, D. L. Goodstein, and J. G. Dash, Adsorbtion and Specific-Heat Studies of Monolayer and Submonolayer FIlms of He3 and He4, Phys. Rev. 168, 249 (1968).

    Google Scholar 

  19. I. Rudnick, R. S. Kagiwida, J. C. Fraser, and E. Guyon, Third sound in adsorbed superfluid films, Phys. Rev. Lett. 20, 430 (1968).

    Google Scholar 

  20. G. Baym, R. G. Barrera, and C. J. Pethick, Mobility of the electron bubble in superfluid helium, Phys. Rev. Lett. 22, 20 (1969).

    Google Scholar 

  21. C. Zipfel and T. M. Sanders, Proceedings of the Eleventh International Conference on Low Temperature Physics, St. Andrews, Scotland, (1968).

    Google Scholar 

  22. R. Luusalo, A. Husmann, J. Kopu, and P. J. Hakonen, Pseudo-contact angle due to superfluid vortices in 4He, Europhys. Lett. 50, 222 (2000).

    Google Scholar 

  23. L. B. Lurio, T. A. Rabedeau, P. S. Pershan, I. F. Silvera, M. Deutsch, S. D. Kosowski, and B. M. Ocko, X-ray specular reflectivity study of the liquid-vapor density profile of 4He, Phys. Rev. B 48, 9644 (1993).

    Google Scholar 

  24. H. W. Jackson and P. V. Mason, Third-sound propagation in thick films of superfluid 4He, Phys. Rev. B 42, 7825 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penanen, K., Packard, R.E. A Model for Third Sound Attenuation in Thick 4He Films. Journal of Low Temperature Physics 128, 25–35 (2002). https://doi.org/10.1023/A:1015743822705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015743822705

Keywords

Navigation