Skip to main content
Log in

Synechocystis sp. PCC 6803 — a useful tool in the study of the genetics of cyanobacteria

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The cyanobacterium Synechocystis sp. PCC 6803 was the first phototrophic organism to be fully sequenced. The genomic sequence has revealed the structure of the genome and its gene constituents (3167 genes), as well as the relative map positions of each gene. The functions of nearly half of the genes has been deduced using similarity searches. The genome sequence has also allowed for the implementation of systematic strategies to study gene function and the mechanisms of gene regulation on a genome-wide level. Two genome databases, CyanoBase and CyanoMutants, have been established and act as a central repository for information on gene structure and gene function, respectively. As a result of the genome sequencing and the establishment of these databases, Synechocystis sp. PCC 6803 provides an extremely versatile and easy model to study the genetic systems of photosynthetic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartesevich VV and Pakrasi HB (1995) Molecular identification of an ABC transporter complex for manganese: Analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO J 14: 1845–1853

    Google Scholar 

  • Bateman A, Birney E, Durbin R, Eddy SR, Howe KL and Sonnhammer ELL (2000) The Pfam protein families database. Nucleic Acids Res 28: 263–266

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Watanabe N, Ogawa T and Grossman AR (1999) The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 96: 3188–3193

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Bianco NR, Bryant D and Grossman AR (2000) Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol Microbiol 37: 941–951

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Takahashi A and Grossman AR (2001) Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci USA 98: 7540–7545

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett III G, Bloch CA, Perna NT, Burland V, Riley M, Collado- Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B and Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker A and Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262: 539–544

    PubMed  CAS  Google Scholar 

  • Chauvat F, Rouet P, Bottin H and Boussac A (1989) Mutagenesis by random cloning of an Escherichia coli kanamycin resistance gene into the genome of the cyanobacterium Synechocyistis PCC 6803: Selection of mutants defective in photosynthesis. Mol Gen Genet 216: 51–59

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Cho M, Moon Y, Choi J, Yoo Y, Park Y, Lee K, Kang K and Park YM (2001) ctr1, a gene involved in a signal transduction pathway of the gliding motility in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 492: 33–8

    Article  PubMed  CAS  Google Scholar 

  • Darzins A and Russell MA (1997) Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system - a review. Gene 192: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Huang F, Nilsson F, Hagemann M and Norling B (2000) Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267: 5900–5907

    Article  PubMed  CAS  Google Scholar 

  • Garcia DM, Lopez ML, Florencio FJ and Reyes JC (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803 J Bacteriol 182: 1507–1514

    Article  Google Scholar 

  • Golden SS (1988) Mutagenesis of cyanobacteria by classical and gene-transfer-based methods. Methods Enzymol 167: 714–727

    PubMed  CAS  Google Scholar 

  • Grigorieva G and Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett 13: 367–370

    Article  CAS  Google Scholar 

  • Gupta A, Morby AP, Turner JS, Whitton BA and Robinson NJ (1993) Deletion within the metallothionein locus of cadmiumtolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1). Mol Microbiol 7: 189–195.

    PubMed  CAS  Google Scholar 

  • Hagemann M and Zuther E (1992) Selection and characterization of mutants of the cyanobacterium Synechocystis sp. PCC 6803 unable to tolerate high salt concentrations. Arch Microbiol 158: 429–434

    Article  CAS  Google Scholar 

  • Hagemann M, Richter S, Zuther E and Schoor A (1996) Characterization of a glucosylglycerol-phosphate-accumulatin g, saltsensitive mutant of the cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol 166: 83–91

    Article  PubMed  CAS  Google Scholar 

  • Hansmann S and Martin W (2000) Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: Influence of excluding poorly alignable sites from analysis. Int J Syst Evol Microbiol 50: 1655–1663

    PubMed  CAS  Google Scholar 

  • Hihara Y and Ikeuchi M (1997) Mutation in a novel gene required for photomixotrophic growth leads to enhanced photoautotrophic growth of Synechocystis sp. PCC 6803. Photosynth Res 53: 129–139

    Article  Google Scholar 

  • Hihara Y, Sonoike K and Ikeuchi M (1998) A novel gene, pmgA, specifically regulates photosystem stoichiometry in the cyanobacterium Synechocystis species PCC 6803 in response to high light. Plant Physiol 117: 1205–1216

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A and Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793–806

    Article  PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT and Williams ST (ed) (1994) Bergey's Manual of Determinative Bacteriology. Lippincott Williams & Wilkins, Baltimore, 787 pp

    Google Scholar 

  • Honda D, Yokota A and Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48: 723–739

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Lamparter T, Mittmann F, Hartmann E, Gärtner W, Wilde A and Börner T (1997) A prokaryotic phytochrome. Nature 386: 663

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274: 982–985

    Article  PubMed  CAS  Google Scholar 

  • Kamei A, Ogawa T and Ikeuchi M (1998) Identification of a novel gene (slr2031) involved in high-light resistance in the cyanobacterium Synechocystis sp. PCC 6803. In:Garab G (ed) Photosynthesis: Mechanism and Effects, pp 2901–2905. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Kamei A, Yuasa T, Orikawa K, Geng X and Ikeuchi M (2001a) A eukaryotic-type protein kinase SpkA is required for the normal motility of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. J Bacteriol 183: 1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Kamei A, Hihara Y, Geng X and Ikeuchi M (2001b) Functional analysis of lexA-like gene, sll1626 in Synechocystis sp. PCC 6803 using DNA microarray. Plant Cell Physiol Suppl 32, S95

    Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Satoh K and Pakrasi H (2001) Polypeptide and photosynthetic properties of purified Photosystem II from HT-3 mutant of Synechocystis sp. PCC 6803 whose CP47 has been HIS-tagged. Plant Cell Physiol Suppl 42: s154

    Google Scholar 

  • Katoh A, Sonoda M and Ogawa T (1995) A possible role of 154-base pair nucleotides located upstream of ORF440 on CO2 transport of Synechocystis sp. PCC 6803. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol 3, pp 481–484. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Katoh H, Grossman AR, Hagino N and Ogawa T (2000) A gene of Synechocystis sp. strain PCC6803 encoding a novel iron transporter. J Bacteriol 182: 6523–6524

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Hagino N, Grossman AR and Ogawa T (2001a) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC6803. J Bacteriol 183: 2779–2784

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Hagino N and Ogawa T (2001b) Iron-binding activity of the FutA1 subunit of ABC-type iron transporter in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol 42: 823–827

    Article  PubMed  CAS  Google Scholar 

  • Komine Y, Adachi T, Inokuchi H and Ozeki H (1990) Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol 212: 579–598

    Article  PubMed  CAS  Google Scholar 

  • Labarre J, Chauvat F and Thuriaux P (1989) Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 171: 3449–3457

    PubMed  CAS  Google Scholar 

  • Lamparter T, Mittmann F, Gaertner W, Boerner T, Hartmann E and Hughes J (1997) Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc Natl Acad Sci USA 94: 11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Mann NH, Novac N, Mullineaux CW, Newman J, Bailey S and Robinson C (2000) Involvement of an FtsH homologue in the assembly of functional Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 479: 72–77

    Article  PubMed  CAS  Google Scholar 

  • Mikkat S, Milkowski C and Hagemann M (2000) The gene sll0273 of the cyanobacterium Synechocystis sp. strain PCC6803 encodes a protein essential for growth at low Na+/K+ ratios. Plant Cell Environ 23: 549–559

    Article  CAS  Google Scholar 

  • Mizuno T, Kaneko T and Tabata S (1996) Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res 3: 407–414

    Article  PubMed  CAS  Google Scholar 

  • Montesinos ML, Muro PAM, Herrero A and Flores E (1998) Ammonium/methylammonium permeases of a cyanobacterium. Identification and analysis of three nitrogen-regulated amt genes in Synechocystis sp. PCC 6803. J Biol Chem 273: 31463–31470

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y and Tabata S (1997) Codon-anticodon assignment and detection of codon usage trands in seven microbial genomes. Microb Comp Genom 2: 299–312

    CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Hirosawa M, Miyajima N and Tabata S (1998) CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803 Nucleic Acids Res. 26: 63–67

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Miyajima N and Tabata S (1999) Extension of CyanoBase. CyanoMutants: repository of mutant information on Synechocystis sp. Strain PCC 6803 Nucleic Acids Res. 27: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Norling B, Zak E, Andersson B and Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6083 FEBS Lett 436: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Pakrasi HB and Ogawa T (2000) Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803 J Biol Chem 275: 31630–4

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S and Ohmori M (1999) Analysis of cyanobacterial motility in Synechocystis sp. PCC6803. Plant Cell Physiol Suppl 40: S135

    Google Scholar 

  • Okamoto S, Ikeuchi Mand Ohmori M(1999) Experimental analysis of recently transposed insertion sequences in the cyanobacterium Synechocystis sp. PCC 6803. DNA Res 6: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Pakrasi H, Ogawa T and Bhattacharrya-Pakrasi M (2001) Transport of metals: a key process in oxygenic photosynthesis. In: Aro E-M and Andersson B (ed) Advances in Photosynthesis and Respiration, Vol 11, pp 253–264. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Reith ME and Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333–335

    CAS  Google Scholar 

  • Rippka R and Herdman M(1992) Catalogue of Strains. Pasteur Culture Collection of Cyanobacterial Strains in Axenic Culture. Vol I, Institut Pasteur, Paris

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Sazuka T and Ohara O (1997) Towards a proteome project of cyanobacterium Synechocystis sp. strain PCC6803: Linking 130 protein spots with their respective genes. Electrophoresis 18: 1252–1258

    Article  PubMed  CAS  Google Scholar 

  • Sazuka T, Yamaguchi M and Ohara O (1999) Cyano2Dbase updated: Linkage of 234 protein spots to corresponding genes through N-terminal microsequencing. Electrophoresis 20: 2160–2171

    Article  PubMed  CAS  Google Scholar 

  • Sergeyenko TV and Los DA (2000) Identification of secreted proteins of the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol Lett 193: 213–216

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A and Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA 98: 11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M and Cohen- Bazire G (1971) Purification and properties of unicellular blue-green alga (order Chroococcales). Bacteriol Rev 35: 171–205

    PubMed  CAS  Google Scholar 

  • Stirewalt VL, Michalowski CB, Löffelhardt W, Bohnert HJ and Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Reptr 13: 327–332

    Article  CAS  Google Scholar 

  • Suzuki I, Kanesaki Y, Mikami K, Kanehisa M and Murata N (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40: 235–244

    Article  PubMed  CAS  Google Scholar 

  • Suzuki I, Los DA, Kanesaki Y, Mikami K and Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19: 1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sun J and Chitnis PR (2000) Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803 Electrophoresis 21: 1746–1754

    CAS  Google Scholar 

  • Wilde A, Churin Y, Schubert H and Boerner T (1997) Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities. FEBS Lett 406: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK (1998) Construction of specific mutations in Photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167: 766–778

    Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–30

    Article  PubMed  CAS  Google Scholar 

  • Yeh KC, Wu SH, Murphy JT and Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara S, Suzuki F, Fujita H, Geng X and Ikeuchi M (2000) Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 41: 1299–1304

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara S, Geng X, Okamoto S, Yura K, Murata T, Go M, Ohmori M and Ikeuchi M (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42: 63–73

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Hisabori T, Yanagisawa S and Ohmori M(2000) Identification and characterization of a novel cAMP receptor protein in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 275: 6241–6245

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Yanagisawa S, Hisabori T and Ohmori M (2001) Idenificaiton of a novel cAMP receptor protein SYCRP1 in the cyanobacterium and screening of the target gene for SYCRP1 using DNA microarray. Plant Cell Physiol Suppl 32: S30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tabata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeuchi, M., Tabata, S. Synechocystis sp. PCC 6803 — a useful tool in the study of the genetics of cyanobacteria. Photosynthesis Research 70, 73–83 (2001). https://doi.org/10.1023/A:1013887908680

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013887908680

Navigation