Skip to main content
Log in

Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In addition to the normal-type sunflower (Helianthus annuus L.) where linoleic acid is the major seed fatty acid, a dominant negative high-oleic mutant with oleic acid as the predominant fatty acid was previously obtained. We report the isolation and characterization of three different cDNA sequences, designated Ha89FAD2-1, Ha89FAD2-2, and Ha89FAD2-3, encoding sunflower microsomal oleate desaturases (FAD2), using a PCR strategy. All three deduced amino acid sequences showed significant homology to the known plant FAD2 sequences. Genomic Southern blot analysis revealed that at least one copy of each of these genes is present in the sunflower genome, except for the FAD2-1 gene from the high-oleic mutant, which might be duplicated. The FAD2-2 and FAD2-3 genes were weakly expressed in all tissues studied from both varieties. In contrast, the FAD2-1 gene was expressed strongly and exclusively in developing embryos of normal-type sunflower, whereas its expression in high-oleic developing embryos was drastically reduced. Functional expression of the corresponding cDNAs in yeast confirmed that they encode microsomal oleate desaturases. Furthermore, the FAD2-1 gene from the high-oleic variety also expresses a fully active enzyme. These results suggest that the high-oleic mutation in sunflower interferes with the regulation of the transcription of the seed-specific FAD2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K., Albright L.M., Coen D.M. and Varki A. 1995. Current Protocols in Molecular Biology. John Wiley, New York.

    Google Scholar 

  2. Brown A.P., Dann R., Bowra S. and Hills M. 1998. Characterization of expression of a plant oleate desaturase in yeast. J. Am. Oil. Chem. Soc. 75: 77–82.

    Google Scholar 

  3. Covello P.S. and Reed D.W. 1996. Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae. Plant Physiol. 111: 223–226.

    Google Scholar 

  4. Fernández-Martínez J., Jiménez A., Domínguez J., García J.M., Garcés R. and Mancha M. 1989. Genetic analysis of the high oleic acid content in cultivated sunflower (Helianthus annuus L.). Euphytica 41: 39–51.

    Google Scholar 

  5. Garcés R. and Mancha M. 1989. Oleate desaturation in seeds of two genotypes of sunflower. Phytochemistry 28: 2593–2595.

    Google Scholar 

  6. Garcés R. and Mancha M. 1991. In vitro oleate desaturase in developing sunflower seeds. Phytochemistry 30: 2127–2130.

    Google Scholar 

  7. Garcés R., García J.M. and Mancha M. 1989. Lipid characterization in seeds of a high oleic acid sunflower mutant. Phytochemistry 28: 2597–2600.

    Google Scholar 

  8. Garcés R., Sarmiento C. and Mancha M. 1992. Temperature regulation of oleate desaturase in sunflower (Helianthus annuus L.) seeds. Planta 186: 461–465.

    Google Scholar 

  9. Girke T., Schmidt H., Zähringer U., Reski R. and Heinz E. 1998. Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 15: 39–48.

    Google Scholar 

  10. Harris H.C., McWilliam J.R. and Mason W.K. 1978. Influence of temperature on oil content and composition of sunflower seed. Aust. J. Agric. Res. 29: 1203–1212.

    Google Scholar 

  11. Heppard E.P., Kinney A.J., Stecca K.L. and Miao G.-H. 1996. Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol. 110: 311–319.

    Google Scholar 

  12. Hongtrakul V., Slabaugh M.B. and Knapp S.J. 1998. A seed specific Δ-12 oleate desaturase gene is duplicated, rearranged, and weakly expressed in high oleic acid sunflower lines. Crop Sci. 38: 1245–1249.

    Google Scholar 

  13. Jung S., Powell G., Moore K. and Abbott A. 2000. The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. Mol. Gen. Genet. 263: 806–811.

    Google Scholar 

  14. Kajiwara S., Shirai A., Fujii T., Toguri T., Nakamura K. and Ohtaguchi K. 1996. Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: Expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana. Appl. Environ. Microbiol. 62: 4309–4313.

    Google Scholar 

  15. Liu Q., Singh S.P., Brubaker C.L., Sharp P.J., Green A.G. and Marshall D.R. 1997. Isolation and characterization of two different microsomal ω-6 desaturase genes in cotton (Gossypium hirsutum L.). In: Williams J.P., Khan M.U. and Lem N.W. (eds), Physiology, Biochemistry and Molecular Biology of Plant Lipids. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 383–385.

    Google Scholar 

  16. Miller J.F., Zimmerman D.C. and Vick B.A. 1987. Genetic control of high oleic acid content in sunflower oil. Crop Sci. 27: 923–926.

    Google Scholar 

  17. Murphy D.J. and Piffanelli P. 1998. Fatty acid desaturases: structure, mechanism and regulation. In: Harwood J.L. (ed.), Plant Lipid Biosynthesis. Fundamentals and Agricultural Applications, Seminar Series 67. Cambridge University Press, Cambridge, UK, pp. 95–130.

    Google Scholar 

  18. Okuley J., Lightner J., Feldmann K., Yadav N., Lark E. and Browse J. 1994. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6: 147–158.

    Google Scholar 

  19. Shanklin J. and Cahoon E.B. 1998. Desaturation and related modifications of fatty acids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 611–641.

    Google Scholar 

  20. Smith M.A., Cross A.R., Jones O.T.G., Griffiths W.T., Stymne S. and Stobart K. 1990. Electron-transport components of the 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine Δ12-desaturase (Δ12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochem. J. 272: 23–29.

    Google Scholar 

  21. Soldatov K.I. 1976. Chemical mutagenesis in sunflower breeding. In: Proceedings of the 7th International Sunflower Conference. Internatiional Sunflower Association, Vlaardingen, Netherlands, pp. 352–357.

    Google Scholar 

  22. Sperling P., Hammer U., Friedt W. and Heinz E. 1990. High oleic sunflower: Studies on composition and desaturation of acyl groups in different lipids and organs. Z. Naturforsch. 45c: 166–172.

    Google Scholar 

  23. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. and Higgins D.G. 1997. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid Res. 25: 4876–4882.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Rivas, J.M., Sperling, P., Lühs, W. et al. Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Molecular Breeding 8, 159–168 (2001). https://doi.org/10.1023/A:1013324329322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013324329322

Navigation