Skip to main content
Log in

Azobenzenes for photonic network applications: Third-order nonlinear optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We review the third-order nonlinear performance of pseudo-stilbene type azobenzenes with an eye to application in ultrafast optical signal processing. We discuss mechanisms responsible for the nonlinear response of the azobenzenes. By aggregating experimental data and theoretical trends reported in the literature, we identify five characteristic regions of optical nonlinear response. Analyzed with respect to Stegeman figures of merit, pseudo-stilbene type azobenzenes show promise for ultrafast optical signal processing in two spectral regions, one lying between the main and two-photon absorption resonances, and the other for wavelengths longer than the two-photon absorption resonance. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cotter, J. K. Lucek and D. D. Marcenac, IEEE Commun. Mag. 34 (1997) 90-95.

    Google Scholar 

  2. R. Ramaswami and K. N. Sivarajan, “Optical Networks, A Practical Prespective” (Morgan Kaufmann Publishers Inc., 1998).

  3. P. W. Smith, Bell Syst. Tech. J. 61 (1982) 1975-1983.

    Google Scholar 

  4. B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics” (John Wiley & Sons Inc., 1991).

  5. P. W. E. Smith and L. Qian, Bell Syst. Tech. J. 15 (1999) 28-33.

    Google Scholar 

  6. P. W. E. Smith, in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, 3491 (SPIE, 1998) 3-8.

  7. P. W. E. Smith, in Nonlinear Optical Properties of Advanced Materials 1852 (SPIE, 1993) 2-9.

  8. G. I. Stegeman, in Nonlinear Optical Properties of Advanced Materials, 1852 (SPIE, 1993) 75-89

  9. L. Brzozowski and E. H. Sargent, J. Opt. Soc. Am. 17 (2000) 1360-1365.

    Google Scholar 

  10. L. Brzozowski and E. H. Sargent, IEEE J. Quantum Electron. 36 (2000) 550-555.

    Google Scholar 

  11. L. Brzozowski and E. H. Sargent, ibid. 36 (2000) 1237-1242.

    Google Scholar 

  12. N. J. Long, “Organometallic Compounds for Nonlinear Optics-The Search for Enlightenment!” Angewandte Chemie, International Edition (English) 34 (1995) 21-38.

    Google Scholar 

  13. I. Liakatas, C. Cai, M. BÖsch, C. B. M. JÄger and P. GÜnter, Appl. Phys. Lett. 76 (2000) 1368-1370.

    Google Scholar 

  14. P. N. Prasad and D. J. Williams, “Introduction to Nonlinear Optical Effects in Molecules and Polymers” (John Wiley and Sons, 1991) pp. 3, 4, 14.

  15. C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa and H. Fujiwara, Appl. Phys. B 64 (1997) 471-478.

    Google Scholar 

  16. C. Egami, Y. Suzuki, O. Sugihara, H. Fujimura and N. Okamoto, Jpn. J. Appl. Phys. 36 (1997) 2902-2905.

    Google Scholar 

  17. F. Dong, E. Koudoumas, S. Couris, Y. Shen, L. Qiu and X. Fu, J. Appl. Phys. 81 (1997) 7073-7075.

    Google Scholar 

  18. R. Rangel-Rojo, S. Yamada, H. Matsuda and D. Yankelevich, Appl. Phys. Lett. 72 (1998) 1021-1023.

    Google Scholar 

  19. C. R. MendonÇa, M. M. Costa, J. A. Giacometti, F. D. Nunes and S. C. Zilio, Electron. Lett. 34 (1998) 116-117.

    Google Scholar 

  20. C. B. Yoon, J. I. Lee and H. K. Shim, Synth. Met. 84 (1997) 273-274.

    Google Scholar 

  21. S. Muto, T. Kubo, Y. Kurokawa and K. Suzuki, Thin Solid Films 322 (1998) 233-237.

    Google Scholar 

  22. Y. Wang, J. Zhan, J. Si, P. Ye, X. Fu, L. Qiu and Y. Shen, J. Chem. Phys. 103 (1996) 5357-5361.

    Google Scholar 

  23. Z. X. Zhang, W. Qiu, E. Y. B. Pan, P. S. Chung and Y. Q. Shen, Synth. Met. 84 (1997) 273-274.

    Google Scholar 

  24. X. Liu, G. Xu, J. Si and Y. Shen, J. Appl. Phys. 88 (2000) 3848-3852.

    Google Scholar 

  25. S. Yamakawa, K. Hamashima, T. Knoshita and K. Sasaki, Appl. Phys. Lett. 72 (1998) 1562-1564.

    Google Scholar 

  26. A. Galvan-Gonzales, M. Canava, G. I. Stegeman, R. Twieg, T. C. Kowalczyk and S. Lackritz, Opt. Lett. 24 (1999) 1741-1743.

    Google Scholar 

  27. S. Bauer, W. Ren, S. Yilmaz, W. Wirges, W.-D. Molzow, R. Gehrard-Multhaupt, U. Oertel, B. HÄnel, L. HÄussler and K. L. H. Komber, Appl. Phys. Lett. 63 (1993) 2018-2020.

    Google Scholar 

  28. P. Pantelis, in “Conducting Polymers and Their Application” (IEE, 1992) pp. 4/1–4.

  29. M. Ivanov, T. Todorov, L. Nikolova, N. Tomova and V. Dragostinova, Appl. Phys. Lett. 66 (1995) 2174-2176.

    Google Scholar 

  30. V. M. Churikov and C. C. Hsu, ibid. 77 (2000) 2095-2097.

    Google Scholar 

  31. H. Fei, Z. Wei, Q. Yang, Y. Che, Y. Shen, X. Fu and L. Qiu, Opt. Lett. 20 (1995) 1518-1520.

    Google Scholar 

  32. A. A. R. A. Yusof, S. V. O'Lary and G. R. Mitchell, Opt. Commun. 169 (1999) 333-340.

    Google Scholar 

  33. Y. Yang, H. Fei, Z. Wei, Q. Yang, G. Sun and L. Han, J. Lumin. 66 (1996) 133-135.

    Google Scholar 

  34. Y. Yang, H. Fei, Z. Wei, Q. Yang, G. Sun and L. Han, Opt. Commun. 123 (1996) 189-194.

    Google Scholar 

  35. K. Zlatanova, P. Markovsky, J. Spassova and G. Danev, Opt. Mater. 5 (1996) 279-283.

    Google Scholar 

  36. A. V. Tomov, A. I. Voitenkov and A. V. Knomchenko, Tech. Phys. 43 (1998) 249-250.

    Google Scholar 

  37. L. M. Blinov, M. V. Kozlovsky, K. N. Dn M. Oazki and K. Yoshino, Jpn. J. Appl. Phys. 35 (1996) 5405-5410.

    Google Scholar 

  38. G. Kleideiter, Z. Sekkat, M. Kreiter, M. D. Lechner and W. Knoll, J. Molec. Struct. 52 (2000) 167-178.

    Google Scholar 

  39. M. Skowronek, I. Roterman, L. Konieczny, B. Stopa, J. Rybarska, B. Piekarsak, A. GÓrecki and M. KrÓl, Comput. Chem. 24 (2000) 429-150.

    PubMed  Google Scholar 

  40. S. Delysse, P. Raimond and J.-M. Nunzi, Chem. Phys. 219 (1997) 341-351.

    Google Scholar 

  41. L. Misoguti, C. R. MendonÇa and S. C. Zilio, Appl. Phys. Lett. 74 (1999) 1531-1533.

    Google Scholar 

  42. M. Iwamoto, Y. Majima, H. Naruse and K. Iriama, J. Appl. Phys. 72 (1992) 1631-1636.

    Google Scholar 

  43. C. Egami, Y. Suzuki, T. Uemori, O. Sugihara and N. Okamoto, Opt. Lett. 22 (1997) 1424-1426.

    Google Scholar 

  44. K. Saito, Y. Yamamura, K. Kikuchi and I. Ikemoto, J. Phys. Chem. Solids 56 (1995) 849-857.

    Google Scholar 

  45. M. Terazima, Chem. Phys. Lett. 230 (1994) 87-92.

    Google Scholar 

  46. W.-R. Cho, V. Ricci, T. Pliska, M. Canava and G. I. Stegeman, J. Appl. Phys. 86 (1999) 2941-2944.

    Google Scholar 

  47. S. Kumar, “Azo Functional Polymers” (Technomic Publishing Co. Inc., 1992), pp. 92, 93.

  48. H. Rau, in “Photochemistry and Photophysics”, 2 (CRC Press, 1990) 120-141.

  49. R. W. Boyd “Nonlinear Optics” (Academic Press Limited, 1992), pp. 172, 350.

  50. D. C. Hanna, M. A. Yaratich and D. Cotter, “Nonlinear Optics of Free Atoms and Molecules” (Springer-Verlag, 1979) pp. 34, 60, 61.

  51. S. Malkin and E. Fisher, J. Phys. Chem. 66 (1962) 2482-2486.

    Google Scholar 

  52. H. Stegemeyer, ibid. 66 (1962) 2555-2560.

    Google Scholar 

  53. F. L. Labarthet, P. Rochon and A. Natansohn, Appl. Phys. Lett. 75 (1999) 1377-1379.

    Google Scholar 

  54. C. Barrett, P. L. Rochon and A. L. Natansohn, J. Chem. Phys. 109 (1998) 1505-1516.

    Google Scholar 

  55. J.-A. He, S. Bian, L. Li, J. Kumar, S. K. Tripatey and L. A. Samuelson, Appl. Phys. Lett. 76 (2000) 2233-2235.

    Google Scholar 

  56. R. L. Sutherland, “Handbook of Nonlinear Optics” (Marcel Dekker, Inc., 1996), pp. 327-408.

  57. A. V. Baklanov, M. Aldener, B. Lindgren and U. Sassenberg, J. Chem. Phys. 112 (2000) 6649-6655.

    Google Scholar 

  58. D. M. Turnbull, H. G. Kjaergaard and B. R. Henry, Chem. Phys. 195 (1995) 129-141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzozowski, L., Sargent, E.H. Azobenzenes for photonic network applications: Third-order nonlinear optical properties. Journal of Materials Science: Materials in Electronics 12, 483–489 (2001). https://doi.org/10.1023/A:1012446007088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012446007088

Keywords

Navigation