Skip to main content
Log in

A Century of Turbulence

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A brief, superficial survey of some very personal nominations for highpoints of the last hundred years in turbulence. Some conclusions can be dimly seen. This field does not appear to have a pyramidal structure, like the best of physics. We have very few great hypotheses. Most of our experiments are exploratory experiments. What does this mean?

We believe it means that, even after 100 years, turbulence studies are still in their infancy. We are naturalists, observing butterflies in the wild. We are still discovering how turbulence behaves, in many respects. We do have a crude, practical, working understanding of many turbulence phenomena but certainly nothing approaching a comprehensive theory, and nothing that will provide predictions of an accuracy demanded by designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselmet, F., Gagne, Y., Hopfinger, E.J. and Antonia, R.A., Higher order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140 (1984) 63–89.

    ADS  Google Scholar 

  2. Antonia, R.A., Chambers, A.J., Britz, D. and Browne, L.W.B., Organized structures in a turbulent plane jet: Topology and contribution to momentum and heat transport. J. Fluid Mech. 172 (1986) 211–229.

    MATH  ADS  Google Scholar 

  3. Babin, A.V. and Vishik, M.I., Attractors of Evolution Equations. North-Holland, Amsterdam (1992).

    MATH  Google Scholar 

  4. Barenblatt, G.I., Corin, A.J. and Prostokishin, V.M., Scaling laws for fully developed turbulent flows in pipes. Appl. Mech. Rev. 50 (1997) 413–429.

    Google Scholar 

  5. Barenblatt, G.I., Corin, A.J. and Prostokishin, V.M., Self-similar intermediate structures in turbulent boundary layers at large Reynolds numbers. J. Fluid Mech. 410 (2000) 263–283.

    MATH  MathSciNet  ADS  Google Scholar 

  6. Barenblatt, G.I., Iooss, G. and Joseph, D.D. (eds.) Nonlinear Dynamics and Turbulence. Pitman Publishers, Boston (1983).

    MATH  Google Scholar 

  7. Batchelor, G.K., The scattering of radio waves in the atmosphere by turbulent fluctuations in the refractive index. Research Report EE 262, School of Electrical Engineering, Cornell University (1955).

  8. Batchelor, G.K., The Theory of Homogeneous Turbulence. The University Press, Cambridge, UK (1953), reprinted 1956.

    MATH  Google Scholar 

  9. Batchelor, G.K., Wave scattering due to turbulence. In: Sherman, F.S. (ed.), Proceedings 1st International Symposium on Naval Hydrodynamics, Washington, D.C. National Academy of Sciences-National Research Council, Washington (1956) pp. 409–423; discussion 423–430, Publication 515.

    Google Scholar 

  10. Batchelor, G.K. and Townsend, A.A., The nature of turbulent motion at large wavenumbers. Proc. Roy. Soc. London A 199(1057) (1949) 238–255.

    MATH  ADS  Google Scholar 

  11. Bergé, P., Pomeau, Y. and Vidal, C., Order Within Chaos: Towards a Deterministic Approach to Turbulence. Wiley, New York (1984).

    MATH  Google Scholar 

  12. Bernard, P. and Ratin, T. (eds), Berkeley Turbulence Seminar, Lect. Notes in Math., Vol. 615, Springer, New York (1977).

  13. Bilger, R.W., Turbulent diffusion flames. Annu. Rev. Fluid Mech. 21 (1989) 101–135.

    MATH  MathSciNet  ADS  Google Scholar 

  14. Blackadar, A.K., The transformation of energy by the large-scale eddy stress in the atmosphere. New York University, College of Engineering, Meterological Papers 1(4) (1950). Also, Ph.D. Thesis, Graduate School of Arts and Sciences (1950).

  15. Bogey, C., Bailly, C. and Juvé, D., Computation of the sound radiated by a 3-D jet using large eddy simulation. AIAA Paper No. 2000–2009. 6th AIAA/CEAS Aeroacoustics Conference, 12–14 June 2000, Lahina, Hawaii (2000).

  16. Bortav, O., Eden, A. and Erzan, A. (eds), Turbulence Modeling and Vortex Dynamics. Springer-Verlag, Berlin (1997).

    Google Scholar 

  17. Bradshaw, P., Complex turbulent flows. In: Koiter, W.T. (ed.), Proceedings of the Fourteenth IUTAM Congress, Theoretical and Applied Mechanics. North Holland, Delft (1976) pp. 103–113.

    Google Scholar 

  18. Brosa, U., Turbulence without strange atractors. J. Stat. Phys. 55 (1989) 1303–1312.

    MathSciNet  ADS  Google Scholar 

  19. Brown, G. and Roshko, A., The effect of density difference on the turbulent mixing layer. In: A.G.A.R.D. Conference on Turbulent Shear Flows, Conference Proceedings No. 93. NATO Advisory Group for Aerospace Research and Development (1971) pp. 23/1–23/12.

  20. Brown, G.L. and Roshko, A., On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (1974) 775–816.

    ADS  Google Scholar 

  21. Bull, M.K., Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28(4) (1967) 719–754.

    ADS  Google Scholar 

  22. Burgers, J.M. and Mitchner, M., On homogeneous non-isotropic turbulence connected with a mean motion having a constant velocity gradient. Proc. Kon. Ned. Akad. v. Wet. B 56 (1953) 228–235 and 343–354.

    MATH  MathSciNet  Google Scholar 

  23. Burgers, J.M. and van der Hegge Zijnen. Preliminary measurements of the distribution of velocity of a fluid in the immediate neighborhood of a plane, smooth surface. In: Selected Papers of J.M. Burgers. Kluwer Academic Publishers, Dordrecht (1995) pp. 25–56.

    Google Scholar 

  24. Buschmann, M. and Gad-el-Hak, M., Power law or log law for turbulent boundary layer? Bull. Amer. Phys. Soc. 45(9) (2000) 160.

    Google Scholar 

  25. Businger, J.A. and Yaglom, A.M., Introduction to Obukhov's paper on ‘Turbulence in an atmosphere with non-uniform temperature'. Boundary-Layer Meteor. 3 (1971) 3–6.

    ADS  Google Scholar 

  26. Cantwell, B., Wadcock, A. and Coles, D., Study of separated flows using a flying hot-wire. Bull. Amer. Phys. Soc. 19(10) (1974) 1162.

    Google Scholar 

  27. Capinski, W. and Cutland, N.J., Nonstandard Methods for Stochastic Fluid Mechanics. World Scientific, Singapore (1995).

    MATH  Google Scholar 

  28. Chou, P.-Y., On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence. Chinese J. Phys. 4(1) (1940) 1–33.

    MATH  MathSciNet  Google Scholar 

  29. Clemens, N.T. and Mungal, M.G., Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284 (1995) 171–216.

    ADS  Google Scholar 

  30. Constantin, P. and Foias, C., Navier-Stokes Equations. University of Chicago Press, Chicago (1988).

    MATH  Google Scholar 

  31. Comte-Bellot, G. and Corrsin, S., The use of a contraction to improve the isotropy of gridgenerated turbulence. J. Fluid Mech. 25(4) (1966) 657–682.

    ADS  Google Scholar 

  32. Constantin, P., Foias, C. and Temam, R., Attractors representing turbulent flows. Mem. Amer. Math. Soc. 314 (1985) 67 pp.

    Google Scholar 

  33. Corcos, G.M., Resolution of turbulent pressure at the wall of a boundary layer. J. Sound Vibration 6(1) (1967) 59–70.

    ADS  Google Scholar 

  34. Corrsin, S., Investigation of the behavior of parallel two-dimensional air jets. NACAWartime Report W-90 (1944).

  35. Corrsin, S., Decay of turbulence behind three similar grids. Thesis, Aeronautical Engineer, California Institute of Technology (1942).

  36. Corrsin, S., On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Aeronaut. Sci. 18(6) (1951) 417–423.

    MATH  MathSciNet  Google Scholar 

  37. Corrsin, S. and Kistler, A.L., The free-stream boundaries of turbulent flows. NACA Report No. 1244 (1955).

  38. Craya, A., Contribution à l'analyse de la turbulence associée à des vitesses moyennes. Publ. Scientifiques et Techniques Ministè re de l'Air, Paris No. 345 (1958).

  39. Daly, B.J. and Harlow, F.H., Transport equations in turbulence. Phys. Fluids 13 (1970) 2634–2649.

    ADS  Google Scholar 

  40. Deardorff, J., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41 (1970) 453–480.

    MATH  ADS  Google Scholar 

  41. Dedebant, G. and Wehrle, P., Sur les équations aux valeurs probables d'un fluide turbulent. C. R. Acad. Sci. Paris 206 (1938) 1790–1791.

    MATH  Google Scholar 

  42. Doering, C. and Gibbon, J.K., Applied Analysis of Navier-Stokes Equations. Cambridge University Press, Cambridge, UK (1995).

    MATH  Google Scholar 

  43. Donaldson, C. du P., Calculation of turbulent shear flows for atmospheric and vortex motions. AIAA J. 10 (1972) 4–12.

    MATH  ADS  Google Scholar 

  44. Donovan, J.F., Spina, E.F. and Smits, A.J., The structure of a supersonic turbulent boundary layer subjected to concave surface curvature. J. Fluid Mech. 259 (1994) 1–24.

    ADS  Google Scholar 

  45. Dowling, D.R. and Dimotakis, P.E., Similarity of the concentration field of gas-phase turbulent jets. J. Fluid Mech. 218 (1990) 109–141.

    ADS  Google Scholar 

  46. Dryden, H.L. and Kuethe, A.M., The measurement of fluctuations of air speed by the hot-wire anemometer. NACA Report No. 320 (1929).

  47. Dussauge, J.P., Evolution de transferts turbulents dans une détente rapide, en écoulement supersonique. Thè se de Doctorat d'Etat, Université d'Aix Marseille (1981).

  48. Dussauge, J.P. and Gaviglio, J., The rapid expansion of a supersonic turbulent flow: Role of bulk dilatation. J. Fluid Mech. 174 (1987) 81–112.

    ADS  Google Scholar 

  49. Dyer, A.J. and Bradley, E.F., An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary-Layer Meteor. 22 (1982) 3–19.

    ADS  Google Scholar 

  50. Eden, A., Foias, C., Nicolaenko, B. and Temam, R., Exponential Attractors for Dissipative Evolution Equations, Wiley, New York (1994).

    MATH  Google Scholar 

  51. Eléna, M. and Lacharme, J.P., Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer. J. Méc. Théor. Appl. 7 (1988) 175–190.

    Google Scholar 

  52. Essex, C. and Nerenberg, M.A.H., Comments on ‘Deterministic chaos: the science and the fiction', by D. Ruelle. Proc. Roy. Soc. London A 435 (1991) 287–292.

    MATH  MathSciNet  ADS  Google Scholar 

  53. Farge, M., Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech. 24 (1992) 395–457.

    MATH  MathSciNet  ADS  Google Scholar 

  54. Favre, A., Equations statistiques des gaz turbulents: masse, quantité de mouvement. C. R. Acad. Sci. Paris 246 (1958) 2576–2579.

    MATH  MathSciNet  Google Scholar 

  55. Favre, A., Equations statistiques des gaz turbulents: Énergie totale, énergie interne. C. R. Acad. Sci. Paris 246 (1958) 2723–2725.

    MATH  MathSciNet  Google Scholar 

  56. Favre, A., Equations statistiques des gaz turbulents: Énergie cinétique, énergie cinétique du mouvement macroscopique, énergie cinétique de la turbulence. C. R. Acad. Sci. Paris 246 (1958) 2839–2842.

    MATH  MathSciNet  Google Scholar 

  57. Favre, A., Equations statistiques des gaz turbulents: Enthalpie, entropie, température. C. R. Acad. Sci. Paris 246 (1958) 3216–3219.

    MATH  MathSciNet  Google Scholar 

  58. Fernholz, H.H., Preliminary measurements of the distribution of the velocity of a fluid in the immediate neighborhood of a plane, smooth surface, by J.M. Burgers and B.G. van der Hegge Zijnen-Revisited and discussed. In: Henkes, R.A.W.M. and van Ingen, J.L. (eds), Transitional Boundary Layers in Aeronautics. North Holland, Amsterdam (1996) pp. 33–38.

    Google Scholar 

  59. Ferris, T., How to predict everything. The New Yorker LXXV(18) (1999) 35–39, July 12.

    Google Scholar 

  60. Francey, R.J. and Garratt, J.R., Interpretation of flux-profile observation at ITCE (1976). J. Appl. Meteor. 20 (1981) 603–618.

    ADS  Google Scholar 

  61. Freund, J.B., Direct numerical simulation of the noise from a Mach 0.9 jet. ASME Fluids Engrg. Div. FEDSM99–7251 (1999).

  62. Freund, J.B., Acoustic sources in a turbulent jet: A direct numerical simulation study. AIAA Paper 99–1858 (1999).

  63. Freymuth, P., Bibliography of Thermal Anemometry. TSI, St Paul, MN, first edition (1982); second edition (1992).

    Google Scholar 

  64. Frisch, U., Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge, UK (1995).

    MATH  Google Scholar 

  65. George, W.K. and Castillo, L., Zero-pressure-gradient boundary layers. Appl. Mech. Rev. 50 (2000) 689–729.

    Google Scholar 

  66. Gibson, C.H., Friehe, C.A. and McConnell, S., Structure of sheared turbulent fields. Phys. Fluids 20(10) (1977) 156–167.

    ADS  Google Scholar 

  67. Gibson, C.H., Ozmidov, R.V. and Paka, V.T., Joint Soviet-American measurement of oceanic turbulence on the 11th cruise of the Dimitri Mendeleev. Okeanologia 15(1) (1975) 191–194 [in Russian]. Oceanology 15(1) (1975) 135–137 [in English].

    Google Scholar 

  68. Gagne, Y., Étude expérimentatale de l'intermittence et des singularités dans le plan complexe en turbulence développée. Thè se de Doctorat, L'Université de Grenoble (1987).

  69. Gibson, M.M., Spectra of turbulence in a round jet. J. Fluid Mech. 15 (1963) 161–173.

    MATH  ADS  Google Scholar 

  70. Gödecke, K., Messungen der atmosphäischen Turbulenz in Bodennähe mit einer Hitzdrahtmethode. Ann. Hydrogr. (10) (1935) 400–410 [no volume number].

  71. Grant, H.L., Stewart, R.W. and Moilliet, A., Turbulence spectra from a tidal channel. J. Fluid Mech. 12(2) (1962) 241–268.

    MATH  ADS  Google Scholar 

  72. Grossmann, S., The onset of shear-flow turbulence. Rev. Mod. Phys. 72 (2000) 603–618.

    ADS  Google Scholar 

  73. Grun, B., The Timetables of History. Simon and Schuster, New York, (1982). A Touchstone Book.

    Google Scholar 

  74. Guarini, S.E., Moser, R.D., Shariff, K. and Wray, A., Direct numerical simulation of a turbulent boundary layer at M = 2.5. J. Fluid Mech. 414 (2000) 1–33.

    MATH  ADS  Google Scholar 

  75. Guckenheimer, J., Strange attractors in fluids: Another view. Ann. Rev. Fluid Mech. 18 (1986) 15–31.

    MATH  MathSciNet  ADS  Google Scholar 

  76. Hennon, M., A two-dimensional mapping with a strange attractor. Comm. Math. Phys. 50 (1976) 69–77.

    MathSciNet  ADS  Google Scholar 

  77. Hesselberg, T., Die Gesetze des ausgegleichenen atmosphaerischen Bewegungen. Beitr. Physik freien Atmosphaere. 12 (1926) 141–160.

    Google Scholar 

  78. Hesselberg, T., Ueber Reibung und Dissipation in der Atmosphaere. Geofysiske Publikationer, Kristiania III(5) (1924) 3–26.

    Google Scholar 

  79. Holmes, P.J., Berkooz, G. and Lumley, J.L., Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge, UK (1996).

    MATH  Google Scholar 

  80. Hopf, E., A mathematical example displaying features of turbulence. Comm. Pure Appl.Math. 1 (1948) 303–322.

    MATH  MathSciNet  Google Scholar 

  81. Hopf, E., Statistical hydromechanics and functional calculus. J. Rat. Mech. Anal. 1 (1953) 87–123.

    MathSciNet  Google Scholar 

  82. Horstman, C.C. and Owen, F.K., Turbulent properties of a compressible boundary layer. AIAA J. 10 (1972) 1418–1424.

    ADS  Google Scholar 

  83. Huerre, P., Amram, K. and Chomaz, J.M., Instabilities and bifurcations in variable density flows. In: Fulachier, L., Lumley, J.L. and Anselmet, F. (eds), Variable Density Low-Speed Turbulent Flows. Kluwer Academic Publishers, Dordrecht (1997) pp. 3–8.

    Google Scholar 

  84. Huguenard, E., Magnan, A. and Planiol, A., Les appareils à fils chauds, leur application à l'étude des mouvements atmosphériques. Bulletin Technique, Service de l'Aéronautique, No. 32, Cedocar, Paris, 66 pp., 98 figs. (1926).

    Google Scholar 

  85. Hunt, J.C.R., Phillips, O.M. and Wiliams, D., (eds), Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years on. Royal Society, London (1991) 240 pp.

    MATH  Google Scholar 

  86. Kader, B.A. and Yaglom, A.M., Heat and mass transfer laws for fully turbulent wall flows. Internat. J. Heat Mass Transfer 15 (1972) 2329–2351.

    Google Scholar 

  87. Kato, H. and Phillips, O.M., On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech. 37(4) (1969) 643–655.

    ADS  Google Scholar 

  88. Kantha, L.H., Phillips, O.M. and Azad, R.S., On turbulent entrainment at a stable density interface. J. Fluid Mech. 79 (1977) 753–768.

    ADS  Google Scholar 

  89. Keller, L.V. and Friedmann, A.A., Differentialgleichung für die turbulente Bewegung einer kompressiblen Flüssigkeit. In: Biezeno, C.B. and Burgers, J.M. (eds), Proceedings of 1st International Congress of Applied Mechanics, Delft, The Netherlands. J. Waltman Jr. (1925) pp. 395–405.

    Google Scholar 

  90. Kim, H.T., Kline, S.J. and Reynolds, W.C., Production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50(1) (1971) 133–160.

    ADS  Google Scholar 

  91. Kistler, A.L., Measurement of joint probability in turbulent dispersion of heat from two line sources. Part II of Ph.D. Dissertation, The Johns Hopkins University (1956).

  92. Kistler, A.L. and Vrebalovich, T., Grid turbulence at large Reynolds numbers. Bull. Amer. Phys. Soc. II 6 (1961) 207.

    Google Scholar 

  93. Kistler, A.L. and Vrebalovich, T., Grid Turbulence at large Reynolds numbers. J. Fluid Mech. 26(1) (1966) 37–47.

    ADS  Google Scholar 

  94. Kistler, A.L., O'Brien, V. and Corrsin, S., Preliminary measurements of turbulence and temperature fluctuations behind a heated grid. NACA Res. Mem. No. RM 54D19 (1954).

  95. Kistler, A.L., O'Brien, V. and Corrsin, S., Double and triple correlations behind a heated grid. J. Aero. Sci. 23(1) (1956) 96–96.

    Google Scholar 

  96. Klebanoff, P.S., Tidstrom, K.D. and Sargent, L.M., The three-dimensional nature of boundary layer instability. J. Fluid Mech. 12(1) (1962) 1–34.

    MATH  ADS  Google Scholar 

  97. Kline, S.J. and Reynolds, W.C., Structure of the turbulent boundary layer on a smooth wall. Phys. Fluids. 10(9) (1967) S304-S304.

    ADS  Google Scholar 

  98. Kline, S.J., Reynolds, W.C., Schraub, F.A. and P.W. Runstadler, P.W., The structure of turbulent boundary layers. J. Fluid Mech. 30 (1967) 741–773.

    ADS  Google Scholar 

  99. Kolmogoroff, A.N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin (1933). [2nd English trans.: A.N. Kolmogorov. Foundations of the Theory of Probability, Chelsea. New York (1956).]

    Google Scholar 

  100. Kolmogorov, A.N., La transformation de Laplace dans les espaces linéaires. C. R. Acad. Sci. Paris, 200 (1935) 1717–1718.

    MATH  Google Scholar 

  101. Kolmogorov, A.N., Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (1941) 299–303.

    ADS  Google Scholar 

  102. Kolmogorov, A.N., Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32 (1941) 19–21.

    Google Scholar 

  103. Kolmogorov, A.N., Equations of turbulent motion of an incompressible fluid. Izv. Akad. Nauk SSSR, Ser. Fiz. 6 (1942) 56–58.

    Google Scholar 

  104. Kolmogorov, A.N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech. 13 (1962) 82–85.

    MATH  MathSciNet  ADS  Google Scholar 

  105. Kovasznay, L.S.G., Turbulence in supersonic flow. J. Aeronaut. Sci. 20(10) (1953) 657–674, 682.

    MATH  Google Scholar 

  106. Kraichnan, R.H., The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5(4) (1959) 497–543.

    MATH  MathSciNet  ADS  Google Scholar 

  107. Kraichnan, R.H., Test-field model for inhomogeneous turbulence. J. Fluid Mech. 56(2) (1972) 287–304.

    MATH  MathSciNet  ADS  Google Scholar 

  108. Krasil'nikov, V.A., Sound propagation in a turbulent atmosphere. Dokl. Akad. Nauk SSSR 47(7) (1945) 486–489.

    Google Scholar 

  109. Krasil'nikov, V.A., Effect of fluctuations of the refractive index of the atmosphere on the propagation of ultra-short radio waves. Izv. Akad. Nauk SSSR, Ser. Geogr. i Geofiz. 13(1) (1949) 33–57.

    MathSciNet  Google Scholar 

  110. Krasil'nikov, V.A., Fluctuations in the angle of arrival in stellar scintillation phenomenon. Dokl. Akad. Nauk SSSR 65(3) (1949) 291–294.

    Google Scholar 

  111. Kuo, A.Y.S. and Corrsin, S., Experiment on the geometry of the fine-structure regions in fully turbulent fluid. J. Fluid Mech. 50 (1971) 285.

    ADS  Google Scholar 

  112. Ladyzhenskaya, O.A., Attractors for Semigroups of Evolution Equations. Cambridge University Press, Cambridge, UK (1991).

    Google Scholar 

  113. Lamballais, E., Lesieur, M. and Métais, O., Probability distribution functions and coherent structures in a turbulent channel. Phys. Rev. E 56 (1997) 6761–6766.

    ADS  Google Scholar 

  114. Landau, L.D., On the problem of turbulence. Dokl. Akad. Nauk SSSR 44 (1944) 339–342. [Engl. transl. in C. R. Acad. Sci. URSS 44 (1944) 311–314, and in Collected Papers. Pergamon Press, Oxford and Gordon and Breach, New York (1965) pp. 387–391.]

    Google Scholar 

  115. Landau, L.D. and Lifshitz, E.M., Mechanics of Continuous Media, Gostekhisdat, Moscow (1944) 1st Russian edition; Mechanics of Continuous Media, Gostekhisdat, Moscow (1953), 2nd Russian edition; Fluid Mechanics, Pergamon Press, London (1958) 1st English edition; Fluid Mechanics, Pergamon Press, London (1987) revised English edition.

    Google Scholar 

  116. Lanford, O.E., The strange attractor theory of turbulence. Ann. Rev. Fluid Mech. 14 (1982) 347–364.

    MathSciNet  ADS  Google Scholar 

  117. Laufer, J., Ffowcs-Williams, J.E. and Childress, S.,. Mechanism of noise generation in the turbulent boundary layer. AGARDograph 90. North Atlantic Treaty Ogranization, Advisory Group for Aerospace Research and Development (1964).

  118. Laufer, J., Investigation of turbulent flow in a two-dimensional channel. Nat. Advis. Com. Aeronautic. Report No. 1033 (1951).

  119. Laufer, J., The structure of turbulence in fully developed pipe flow. Nat. Advis. Com. Aeronautic. Report No. 1174 (1954).

  120. Launder, B.E., Reece, G.J. and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68 (1975) 537–566.

    MATH  ADS  Google Scholar 

  121. Lee, S., Lele, S.K. and Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251 (1993) 533–562.

    ADS  Google Scholar 

  122. Lesieur, M., Turbulence in Fluids, 3rd enlarged edn. Kluwer Academic Publishers, Dordrecht (1997).

    MATH  Google Scholar 

  123. Lettau, H., Atmosphärische Turbulenz. Akademische Verlagsgesellschft, Leipzig (1939).

    Google Scholar 

  124. Lighthill, M.J., On sound generated aerodynamically. I. General theory. Proc. Roy. Soc. London A 211(1107) (1952) 564–587.

    MATH  MathSciNet  ADS  Google Scholar 

  125. Liepmann, H.W., Aspects of the turbulence problem. Part II. Z. angew. Math. Phys. 3 (1952) 407–426.

    MathSciNet  Google Scholar 

  126. Liepmann, H.W., The rise and fall of ideas in turbulence. Amer. Scientist 67 (1979) 221–228.

    MathSciNet  ADS  Google Scholar 

  127. Liu, J.T.C., Contributions to the understanding of large-scale coherent structures in developing free turbulent shear flows. Adv. Appl. Mech. 26 (1988) 183–309.

    MATH  Google Scholar 

  128. Lorenz, E.N., Deterministic nonperiodic flow. J. Atm. Sci. 20 (1963) 130–141.

    ADS  Google Scholar 

  129. Lumley, J.L. and Panofsky, H.A., The Structure of Atmospheric Turbulence. Wiley Interscience, New York (1964).

    Google Scholar 

  130. Makita, H., Realization of a large-scale turbulent field in a small wind tunnel. Fluid Dyn. Res. 8(1–4) (1991) 53–64.

    Google Scholar 

  131. Mandelbrot, B.B., Intermittent turbulence and fractal dimension. Kurtosis and the spectral exponent 5/3 +B. In: Temam, R. (ed.), Turbulence and Navier-Stokes Equations. Springer-Verlag, Berlin (1976) pp. 121–145.

    Google Scholar 

  132. Mandelbrot, B.B., The Fractal Geometry of Nature. Freeman, San Francisco, CA (1982).

    MATH  Google Scholar 

  133. Mandelbrot, B.B., Fractals and Multifractals: Noise, Turbulence and Aggregates, Vol. 1 of Collected Works, Springer-Verlag, New York (1991).

    Google Scholar 

  134. Marsden, J.E. and McCracken, M., The Hopf Bifurcation and Its Applications. Springer-Verlag, New York (1976).

    MATH  Google Scholar 

  135. McComb, W.D., Theory of turbulence. Rep. Prog. Phys. 58 (1995) 1117–1205.

    ADS  Google Scholar 

  136. Michard, M., Etude des mécaniques liées aux grandes structures orientées dans une turbulence de grille. Thè se, Ecole Centrale de Lyon (1988).

  137. Michard, M., Acquisition d'informations spectrales et modélisations de champs turbulents anisotropes. Rapport DRET, Marché No. 86.34.497.00.470.75.01, Lot. No. 4 (1991). Also, Rapport Final (1992).

  138. Miller, P.L., Mixing in high Schmidt number turbulent jets. Thesis, California Institute of Technology (1991).

  139. Miller, P.L. and Dimotakis, P.E., Reynolds number dependence of scalar fluctuations in a high Schmidt number turbulent jet. Phys. Fluids 3(5) (1991) 1156–1163.

    ADS  Google Scholar 

  140. Miller, P.L. and Dimotakis, P.E., Stochastic geometric properties of scalar interfaces in turbulent jets. Phys. Fluids 3(1) (1991) 168–177.

    ADS  Google Scholar 

  141. Mobbs, F.R., Spreading and contraction at boundaries of free turbulent flows. J. Fluid Mech. 33 (1968) 227–239.

    ADS  Google Scholar 

  142. Monin, A.S., On the nature of turbulence. Uspekhi Fiz. Nauk 125 (1978) 97–122 [English transl. in Soviet Phys. Uspekhi].

    MathSciNet  Google Scholar 

  143. Monin, A.S. and Ozmidov, R.V., Oceanic Turbulence. Gidrometeoizdat, Leningrad (1981) [in Russian]. [English translation: Turbulence in the Ocean, H. Tennekes (ed.), Kluwer Academic Publishers, Dordrecht (1985).]

    Google Scholar 

  144. Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics. Translation editor J.L. Lumley. The MIT Press, Cambridge, MA, Volume I (1971); Volume II (1975).

    Google Scholar 

  145. Monkewitz, P.A. and Pfizenmaier, E., Mixing by 'side-jets’ in strongly forced and self-excited round jets. Phys. Fluids. A3 (1991) 1356–1361.

    ADS  Google Scholar 

  146. Monkewitz, P.A. and Sohn, K.D., Absolute instability in hot jets. AIAA J. 26 (1988) 911–916.

    ADS  Google Scholar 

  147. Monkewitz, P.A., Bechert, D.W., Barsikow, B. and Lehmann, B., Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213 (1990) 611–639.

    ADS  Google Scholar 

  148. Morkovin, M.V., Effects of compressibility on turbulent flows. In: Mécanique de la Turbulence, Colloques Internationaux du Centre National de la Recherche Scientifique, No. 108. Editions du CNRS, Paris (1962) pp. 367–380.

    Google Scholar 

  149. Morkovin, M.V. and Phinney, R.E., Extended applications of hot-wire anemometry to highspeed turbulent boundary layers. Department of Aeronautics, Johns Hopkins University Report, 141 pp.; AFOSRTN–58–469; ASTIA AD 158–279 (1958).

  150. Mydlarski, L. and Warhaft, Z., On the onset of high-Reynolds Number grid-generated windtunnel turbulence. J. Fluid Mech. 320 (1996) 331–368.

    ADS  Google Scholar 

  151. Newell, A.C., Chaos and turbulence: Is there a connection? InL Drew, D.A. and Flaherty, J.E. (eds), Mathematics Applied to Fluid Mechanics and Stability. SIAM, Philadelphia, PA (1986) pp. 157–189.

    Google Scholar 

  152. Nikuradse, J., Turbulente Strömung in nicht kreisförmigen Rohren. Ing.-Arch. 1 (1930) 306.

    MATH  Google Scholar 

  153. Nikuradse, J., Gesetzmäß igkeit der turbulenten Strömung in glatten Rohren. Forschungsheft 356 (1932).

  154. Nikuradse, J., Strömungsgesetze in rauhen Rohren. Forschungsheft 361 (1933).

  155. Obukhov, A.M., Some specific features of atmospheric turbulence. J. Fluid Mech. 13 (1962) 77–81.

    MathSciNet  ADS  Google Scholar 

  156. Obukhov, A.M., On the scattering of sound in a turbulent medium. Dokl. AN SSSR 30(7) (1941) 611–614.

    Google Scholar 

  157. Obukhov, A.M., Turbulence in thermally inhomogeneous atmosphere. Trudy Inst. Teor. Geofiz. Akad. Nauk SSSR 1 (1946) 951–115. [English transl. in Boundary-Layer Meteor. 3 (1971) 7–29.]

    Google Scholar 

  158. Obukhov, A.M., Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk SSSR, Ser. Geogr. i Geofiz. 13(1) (1949) 58–69.

    Google Scholar 

  159. Obukhov, A.M., On the influence of weak inhomogeneities in the atmosphere on the propagation of sound and light. Izv. AN SSSR Ser. Geophyz. (2) (1953) 155–165 [no volume number given; in Russian].

  160. Obukhov, A.M., On the propagation of waves in a medium with random inhomogeneities of the index of refraction. Akusticheskii Zhurnal 2(2) (1956) 107–112.

    Google Scholar 

  161. Obukhov, A.M., Turbulence and Atmospheric Dynamics. English Translation Ed. J.L. Lumley. CTR Monograph. The Center for Turbulence Research, Palo Alto CA (2001).

    Google Scholar 

  162. Österlund, J.M., Johansson, A.V., Nagib, H.M. and Hites, M.H., A note on the overlap region in turbulent boundary layers. Phys. Fluids 12 (2000) 1–4.

    ADS  MATH  Google Scholar 

  163. Orszag, S., Analytical theories of turbulence. J. Fluid Mech. 41 (1970) 363–386.

    MATH  ADS  Google Scholar 

  164. Orszag, S.A. and Patterson, G.S., Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28 (1972) 76–79.

    ADS  Google Scholar 

  165. Ott, S. and Mann, J., An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422 (2000) 207–223.

    MATH  ADS  Google Scholar 

  166. Panchapakesan, N.R. and Lumley, J.L., Turbulence measurements in axisymmetric jets of air and helium 1. Air-jet. J. Fluid Mech. 246 (1993) 197–223.

    ADS  Google Scholar 

  167. Panchapakesan, N.R. and Lumley, J.L., Turbulence measurements in axisymmetric jets of air and helium 2. Helium-jet. J. Fluid Mech. 246 (1993) 225–247.

    ADS  Google Scholar 

  168. Panofsky, H.A., Tennekes, H., Lenshow, D.H. and Wyngaard, J.C., The characteristics of the velocity components in the surface layer under convective conditions. Boundary-Layer Meteor. 11 (1977) 355–361.

    ADS  Google Scholar 

  169. Perry, A.E. and Li, J.D., Experimental support for the attached-eddy hypothesis on zeropressure-gradient boundary layers. J. Fluid Mech. 218 (1990) 405–438.

    ADS  Google Scholar 

  170. Pekeris, C.L., Note on the scattering of radiation in an inhomogeneous medium. Phys. Rev. 71(4) (1947) 268–269.

    MATH  ADS  Google Scholar 

  171. Pitot, H., D'une machine pour mesurer la vitesse des Eaux courantes, and le sillage des Vaisseaux. Memoires de l'Academie Royale des Sciences 45 (1732) 363–375.

    Google Scholar 

  172. Praskovsky, A.A., Gledzer, E.B., Karyakin, M.Yu. and Zhou, Y., The sweeping decorelation hypothesis and energy-inertial scale interactions in high Reynolds number flows. J. Fluid Mech. 248 (1993) 493–511.

    ADS  Google Scholar 

  173. Prandtl, L., Ñber Flüssigkeitsbewegung bei sehr kleiner Reibung. In: Proceedings, 3rd International Mathematical Congress Heidelberg (1904).

  174. Prandtl, L., Ñber die ausgebildete Turbulenz. Z. angew. Math. Mech. 5 (1925) 136–139.

    MATH  Google Scholar 

  175. Prandtl, L., Meteorologische Anwendungen der Strömungslehre, Beitr. Phys. fr. Atmosph. 19 (1932) 188–202.

    MATH  Google Scholar 

  176. Prandtl, L., Ñber ein neues Formelsystem für die ausgebildete Turbulenz. Nachr. Akad. Wiss. Göttingen, Math.-Phys.Kl. (1945) 6–19.

  177. Priestley, C.H.B., Turbulent Transfer in the Lower Atmosphere. Chicago University Press, Chicago, IL (1959).

    Google Scholar 

  178. Proudman, I., The generation of noise by isotropic turbulence. Proc. Roy. Soc. London A 214(1116) (1952) 119–132.

    MATH  MathSciNet  ADS  Google Scholar 

  179. Raghu, S. and Monkewitz, P.A., The bifurcation of a hot round jet to limit cycle oscillations. Phys. Fluids. A3 (1991) 501–503.

    ADS  Google Scholar 

  180. Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philos. Trans. Roy. Soc. London 174 (1883) 935–982.

    ADS  Google Scholar 

  181. Reynolds, W.C., Computation of turbulent flows. Ann. Rev. Fluid Mech. 8 (1976) 183–208.

    MATH  ADS  Google Scholar 

  182. Richardson, E.G., Les appareils à fil chaud, leur application dans la mécanique expérimentale des fluides. Gauthier-Villars, Paris (1934).

    Google Scholar 

  183. Richardson, L.F., The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London A 97(686) (1920) 354–373.

    ADS  Google Scholar 

  184. Richardson, L.F., Some measurements of atmospheric turbulence. Philos. Trans. Roy. Soc. London A 582(221) (1920) 1–28.

    Google Scholar 

  185. Richardson, L.F., Atmospheric diffusion shown on a distance-neighbor graph. Proc. Roy. Soc. London A 110(756) (1926) 709–737.

    ADS  Google Scholar 

  186. Rotta, J.C., Statistische Theorie nichthomogener Turbulenz. Z. Phys. 129 (1951) 547–572.

    MATH  MathSciNet  ADS  Google Scholar 

  187. Ruelle, D. and Takens, F., On the nature of turbulence. Comm. Math. Phys. 20 (1971) 167–192.

    MATH  MathSciNet  ADS  Google Scholar 

  188. Saddoughi, S.G. and Veeravalli, S.V., Local isotropy in turbulent boundary layers at high Reynolds numbers. J. Fluid Mech. 268 (1994) 333–372.

    ADS  Google Scholar 

  189. Schubauer, G.B. and Skramstad, H.K., Laminar boundary layer oscillations and the stability of laminar flow. J. Aeronaut. Sci. 14 (1947) 69.

    Google Scholar 

  190. Schubauer, G.B. and Skramstad, H.K., Laminar boundary layer oscillations and transition on a flat plate. NACA Techn. Report No. 909 (1948).

  191. Schubauer, G.B. and Klebanoff, P., Contributions to the mechanics of boundary layer transition. National Advisory Committee for Aeronautics Report No. 1289 (1956).

  192. Schumann, U., New subgrid scale motion model for numerical simulation of turbulent flows. Bull. Amer. Phys. Soc. 18(11) (1973) 1469–1469.

    Google Scholar 

  193. Schumann, U., Subgrid scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4) (1975) 376–404.

    MATH  MathSciNet  ADS  Google Scholar 

  194. Shen, X.-C. and Warhaft, Z., The anisotropy of the small scale structure in high Reynolds Number turbulent shear flow. Phys. Fluids 11 (2000) 2976–2989.

    ADS  Google Scholar 

  195. Shlien, D.J. and Corrsin, S., Measurement of Lagrangian velocity autocorrelation in approximately isotropic turbulence. J. Fluid Mech. 62 (1974) 255–271.

    ADS  Google Scholar 

  196. Shraiman, B.I. and Siggia, E.D., Scalar turbulence. Nature 405 (2000) 639–646.

    ADS  Google Scholar 

  197. Smagorinsky, J. and Manabe, S., Numerical model for study of global general circulation. Bull. Amer. Meteorol. Soc. 43(12) (1962) 673–673.

    Google Scholar 

  198. Smale, S., Differential dynamical systems. Bull. Amer. Math. Soc. 73 (1967) 747–817.

    Article  MATH  MathSciNet  Google Scholar 

  199. Smith,M.W., Smits, A.J. and Miles, R.B., Compressible boundary layer density cross-sections by UV Rayleigh scattering. Optics Lett. 14 (1989) 916–918.

    Article  ADS  Google Scholar 

  200. Smits, A.J., Eaton, J.A. and Bradshaw, P., The response of a turbulent boundary layer to lateral divergence. J. Fluid Mech. 94 (1979) 243–268.

    ADS  Google Scholar 

  201. Smits, A.J., Young, S.T.B. and Bradshaw, P., The effect of short regions of high surface curvature on turbulent boundary layers. J. Fluid Mech. 94 (1979) 209–242.

    ADS  Google Scholar 

  202. Snyder, W.H. and Lumley, J.L., Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech. 48(1) (1971) 41–71.

    ADS  Google Scholar 

  203. Spina, E.F. and Smits, A. J., Organized structures in a compressible turbulent boundary layer. J. Fluid Mech. 182 (1987) 85–109.

    ADS  Google Scholar 

  204. Sreenivasan, K.R., On local isotropy of passive scalars in turbulent shear flows. Proc. Roy. Soc. London A 434 (1991) 105–182.

    Google Scholar 

  205. Sreenivasan, K.R., Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 23 (1991) 539–600.

    MathSciNet  ADS  Google Scholar 

  206. Sreenivasan, K.R., Raghu, S. and Kyle, K., Absolute instability in variable density round jets. Exp. Fluids 7 (1989) 309–318.

    Google Scholar 

  207. Stå rner, S.H. and Bilger, R.W., LDA Measurements in a turbulent diffusion flame with axial pressure gradients. Combust. Sci. Technol. 21 (1980) 259–276.

    Google Scholar 

  208. Stewart, R.W., Turbulence and waves in a stratified atmosphere. Radio Sci. 14(12) (1969) 1219–1278.

    Google Scholar 

  209. Stillinger, D.C., Head, M.J., Helland, K.N. and Van Atta, C.W., A closed-loop gravity-driven water channel for density-stratified shear flow. J. Fluid Mech. 131 (1983) 73–89.

    ADS  Google Scholar 

  210. Swinney, H.L. and Gollub, J.P. (eds), Hydrodynamic Instabilities and the Transition to Turbulence, 2nd enlarged edn. Springer-Verlag, Berlin (1985).

    MATH  Google Scholar 

  211. Tabeling, P., Zocchi, G., Belin, F., Maurer, J. and Willaime, H., Probability density functions, skewness and flatness in large Reynolds number turbulence. Phys. Rev. E 53(2) (1996) 1613–1621.

    ADS  Google Scholar 

  212. Takagi, T., Okamoto, T., Taji, M. and Nakasuki, Y., Retardation of mixing and countergradient diffusion in a swirling flame. In: Symposium (International) Combustion 20th. Combustion Institute, Pittsburgh, PA (1985) pp. 251–258.

    Google Scholar 

  213. Tam, C.K.W., Supersonic jet noise. Annu. Rev. Fluid Mech.. 27 (1995) 17–43.

    ADS  Google Scholar 

  214. Tatarski, V.I., On phase fluctuations of sound in a turbulent medium. Izv. AN SSSR Ser. Geophyz. (3) (1953) 252–258.

  215. Tatarski, V.I., Fluctuations in amplitude and phase of waves propagating in a weakly inhomogeneous atmosphere. Dokl. AN SSSR 107(2) (1956) 245–248.

    Google Scholar 

  216. Tatarski, V.I., Wave Propagation in a Turbulent Medium, Transl. R.A. Silverman. McGraw-Hill, New York (1961).

    MATH  Google Scholar 

  217. Tatarski, V.I., The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations, Jerusalem, and US Department of Commerce, National technical Information Service, Springfield, VA (1971).

    Google Scholar 

  218. Taylor, G.I., Eddy motion in the atmosphere. Philos. Trans. Roy. Soc. London A 215 (1915) 1–26.

    ADS  Google Scholar 

  219. Taylor, G.I., The transport of vorticity and heat through fluids in turbulent motion. Proc. Roy. Soc. London A 135(828) (1932) 685–706.

    MATH  ADS  Google Scholar 

  220. Taylor, G.I., The spectrum of turbulence. Proc. Roy. Soc. London A 164(919) (1938) 476–490.

    Article  ADS  Google Scholar 

  221. Taylor, R.J., Thermal structures in the lowest layers of the atmosphere. Aust. J. Phys. 11(2) (1958) 168–176.

    ADS  Google Scholar 

  222. Tennekes, H. and Lumley, J.L., A First Course in Turbulence. MIT Press, Cambridge, MA (1972).

    Google Scholar 

  223. Thomas, N.H. and Hancock, P.E., Grid turbulence near a moving wall. J. Fluid Mech. 82 (1977) 481–496.

    ADS  Google Scholar 

  224. Thompson, B.E. and Whitelaw, J.H., Flying hot-wire anemometry. Exp. Fluids 2 (1984) 47–55.

    Google Scholar 

  225. Townsend, A.A., The measurement of double and triple correlation derivatives in isotropic turbulence. Proc. Cambridge Philos. Soc. 43 (1947) 560–570.

    Google Scholar 

  226. Townsend, A.A., The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge, UK (1956).

    MATH  Google Scholar 

  227. Townsend, A.A., Equilibrum layers and wall turbulence. J. Fluid Mech. 11 (1961) 97–120.

    MATH  MathSciNet  ADS  Google Scholar 

  228. Townsend, A.A., The Structure of Turbulent Shear Flow, 2nd revised edn. Cambridge University Press, Cambridge, UK (1976).

    MATH  Google Scholar 

  229. Tsvang, L.R., Atmospheric turbulence research at the Tsimlyansk scientific station of the Institute of the Physics of the Atmosphere of the USSR Academy of Sciences. Izv., Atmos. Oceanic Phys. 21(4) (1985) 261–267.

    Google Scholar 

  230. Tsvang, L.R., Koprov, B.M., Zubkovskii, S. L., Dyer, A.J., Hicks, B., Miyake, M., Stewart, R.W. and McDonald, J.W., A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970. Boundary Layer Meteo. 3 (1973)

  231. Uberoi, M.S. and Corrsin, S., Diffusion of heat from a line source in isotropic turbulence. NACA Report No. 1142 (1953) [originally published as NACA TN No. 2710 (1952)].

  232. Van Mieghem, J., Production et redistribution de la quantité de mouvement et de l'énergie cinétique dans l'atmosphè re; Application à la circulation atmosphérique générale. Jour. Sci. Météo. (Bruxelles) 1 (1949) 53–67.

    MathSciNet  Google Scholar 

  233. Van Mieghem, J., Les équations générales de la mécanique et de l'energetique des milieux turbulents en vue des applications à lamétéorologie. Mém. Inst. Roy. Météo., Belgique, Vol. 34 (1949).

  234. VanMieghem, J. and Dufour, L., Thermodynamique de l'Atmosphere. Mém. Inst.Roy.Météo., Belgique, Vol. 30 (1948).

    Google Scholar 

  235. Vignon, J.M., Cambon, C., Lesieur, M. and Jeandel, D., Comparison of spectral calculations using the EDQNM theory with experiments of homogeneous thermal turbulence. C. R. Acad. Sci. B Phys. 288(20) (1979) 335–338.

    Google Scholar 

  236. Villars, F. and Weisskopf, V.F., The scattering of electromagnetic waves by turbulent atmospheric fluctuations. Phys. Rev. 94(2) (1954) 232–240.

    MATH  MathSciNet  ADS  Google Scholar 

  237. da Vinci, L., Seated man and water studies. In: Notebooks, Leoni Volume (12579). Royal Library, Windsor Castle (1492).

  238. Virant, M. and Dracos, T., 3D PTV and its application on Lagrangian motion. Meas. Sci. Technol. 8 (1997) 1529–1552.

    ADS  Google Scholar 

  239. Vishik, M.I., Asymptotic Behaviour of Solutions of Evolutionary Equations. Cambridge University Press, Cambridge, UK (1992).

    MATH  Google Scholar 

  240. Vishik, M.I. and Fursikov, A.V., Mathematical Problems of Statistical Hydrodynamics. Kluwer Academic Publishers, Dordrecht (1988).

    Google Scholar 

  241. von Kármán, T., Mechanische Änlichkeit und Turbulenz. In: Proceedings 3rd International Congress of Applied Mechanics, Part I, Stockholm (1930) pp. 85–105.

  242. von Kármán, T., Some aspects of the turbulence problem. In: Proceedings of the 4th International Congress of Applied Mechanics, Cambridge, England, July 3–9, 1934. Cambridge University Press, Cambridge, UK (1935) pp. 54–91.

    Google Scholar 

  243. Wallace, J.M., Brodkey, R.S. and Eckelman, H., The wall region in turbulent shear flow. J. Fluid Mech. 54(1) (1972) 39–48.

    ADS  Google Scholar 

  244. Warhaft, Z., Passive scalars in turbulent flows. Ann. Rev. Fluid Mech. 32 (2000) 203–240.

    MATH  MathSciNet  ADS  Google Scholar 

  245. Watmuff, J.H., Perry, A.E. and Chong, M.S., A flying hot-wire system. Exp. Fluids 1(2) (1983) 63–71.

    Google Scholar 

  246. Wiener, N., Differential space. J. Math. Phys. Mass. Inst. Techn. 2 (1923) 131–174.

    Google Scholar 

  247. Willmarth, W.W. and Tu, B.J., Structure of turbulence in the boundary layer near the wall. Phys. Fluids 10(9) (1967) S134-S137.

    ADS  Google Scholar 

  248. Willmarth, W.W. and Lu, S.S., Structure of the Reynolds stress near a wall. J. Fluid Mech. 55(1) (1972) 65–92.

    ADS  Google Scholar 

  249. Willmarth, W.W. and Wooldridge, C.E., Measurement of the fluctuating pressure at the wall beneath a thick turbulent bloundary layer. J. Fluid Mech. 14(2) (1962) 187–210.

    MATH  ADS  Google Scholar 

  250. Willmarth, W.W. and Roos, F.W., Resolution and structure of the wall pressure field beneath a turbulent boundary layer. J. Fluid Mech. 22(1) (1965) 81–94.

    ADS  Google Scholar 

  251. Willmarth,W.W. and Yang, C.S., Wall-pressure fluctuations beneath turbulent boundary layers on a flat plate and a cylinder. J. Fluid Mech. 41(1) (1970) 47–80.

    ADS  Google Scholar 

  252. Wosnik, M., Castillo, L. and George, W.K., A theory for turbulent pipe and channel flows. J. Fluid Mech. 421 (2000) 115–145.

    MATH  ADS  Google Scholar 

  253. Yaglom, A.M., Homogeneous and isotropic turbulence in viscous compressible fluids. Izv. AN SSSR, Ser. geograf. i geofiz. 12(6) (1948) 501–522.

    MathSciNet  Google Scholar 

  254. Yaglom, A.M., Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Ann. Rev. Fluid Mech. 11 (1979) 505–540.

    MATH  ADS  Google Scholar 

  255. Yaglom, A.M., Similarity laws for wall turbulent flows: Their limitations and generalizations. In: Dracos, Th. and Tsinober, A. (eds), New Approaches and Concepts in Turbulence, (Monte Verità: Proceedings of the Centro Stefano Franscini Ascona). Birkhäuser Verlag, Basel (1993) pp. 7–27.

    Google Scholar 

  256. Yaglom, A.M., Fluctuation spectra and variances in convective turbulent boundary layers: A revaluation of old models, Phys. Fluids 6 (1994) 962–972.

    MATH  MathSciNet  ADS  Google Scholar 

  257. Yeung, P.K., One-and two-particle Lagrangian acceleration correlations in numerically simulated homogeneous turbulence. Phys. Fluids 9 (1997) 2981–2990.

    ADS  Google Scholar 

  258. Zagarola, M.V. and Smits, A.J., Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373 (1998) 33–79.

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumley, J.L., Yaglom, A.M. A Century of Turbulence. Flow, Turbulence and Combustion 66, 241–286 (2001). https://doi.org/10.1023/A:1012437421667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012437421667

Navigation