Skip to main content
Log in

Photocatalytic Activity in the 2,4-Dinitroaniline Decomposition Over TiO2 Sol-Gel Derived Catalysts

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Titania was prepared by the sol-gel method from titanium alkoxide. Depending on the pH of the gelling solution, specific surface areas between 88 and 10 m2/g were obtained. The band gap (E g) of the samples was found between 3.05 and 3.32 eV. In samples gelled at pH5 and 9 and calcined at 400°C only anatase phase is observed, while for pH3 and pH7 brookite, anatase and rutile or anatase-rutile phases coexist. It was found that the photoactivity in the 2,4-dinitroanailine decomposition depends on the E g and on the crystalline phases. The highest activity corresponds to the catalysts having the lowest E g and more than one crystalline phases co-existing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Herrmann, Catal. Today 53, 115 (1999).

    Google Scholar 

  2. M.I. Litter, Appl. Catal. B: Environmental 23, 89 (1999).

    Google Scholar 

  3. K.H. Wang, Y.S. Hsieh, M.Y. Chou, and C.Y. Chang, Appl. Catal. B: Environmental 21, 1 (1999).

    Google Scholar 

  4. S.J. Tsai and S. Cheng, Catal. Today 33, 227 (1997).

    Google Scholar 

  5. V. Loddo, G. Marci, C. Martin, L. Palmisano, V. Rives, and A. Sclafani, Appl. Catal. B: Environmental 20, 29 (1999).

    Google Scholar 

  6. D. Chen and A.K. Ray, Appl. Catal. B: 23, 143 (1999).

    Google Scholar 

  7. A. Fernandez, G. Lassaletta, V.M. Jimenez, A. Justo, A.R. Gonzalez-Elipe, J.M. Herrmann, H. Tahiri, and Y. Ait-Ichou, Appl. Catl. B: Environmental 7, 49 (1995).

    Google Scholar 

  8. I. Arslan, I.A. Balciouglu, and D.W. Bahnemann, Appl. Catal. B: Environmental 26, 193 (2000).

    Google Scholar 

  9. Q. Zhang, L. Gao, and J. Guo, Appl. Catal. B: Environmental 26, 207 (2000).

    Google Scholar 

  10. M. Ampo, T. Shima, S. Kodama, and Y. Kubokawa, J. Phys. Chem 91, 4305 (1987).

    Google Scholar 

  11. R.R. Bacsa and J. Kiwi, Appl. Catal. B Environ. 16, 19 (1998).

    Google Scholar 

  12. A. Sclafani, L. Palmisano, and M. Schiavelo, J. Phys. Chem. 94, 829 (1990).

    Google Scholar 

  13. E. Sanchez and T. Lopez, Mater. Letts. 25, 271 (1995).

    Google Scholar 

  14. T. Lopez, E. Sanchez, P. Bosch, Y. Meas, and R. Gomez, Mater. Chem, Phys. 32, 141 (1992).

    Google Scholar 

  15. W.B. Hannay, Treatise on Solid State Chemistry, Vol. 3 (Plenum Press, New York, 1976), Ch. 3.

    Google Scholar 

  16. X. Bokhimi, A. Morales, O. Novaro, T. Lopez, E. Sanchez, and R. Gomez, J. Mater. Res. 10, 2788 (1995).

    Google Scholar 

  17. T. Lopez and R. Gomez, in Sol gel Optics: Processing and Applications, edited by L.C. Klein (Kluwer Academic Publishers, Dordrecht, 1994), Ch. 16.

    Google Scholar 

  18. E. Pelizzeti, C. Minero, E. Borgarello, L. Tinucci, and N. Serpone, Langmuir 9, 2995 (1993).

    Google Scholar 

  19. K. Tanaka, T. Hisanaga, and A.P. Riviera: in Photocatalyitic Purification and Treatment of Water and Air, edited by D.F. Ollis and H. Al-Ekabi (Elsevier, Amsterdam, 1993), pp. 169–178.

    Google Scholar 

  20. J.M. Herrmann, Catal. Today 24, 157 (1995).

    Google Scholar 

  21. J.A. Navio, G. Colon, M. Macias, C. Real, and M.I. Litter, Appl. Catal. A: General 177, 111 (1999).

    Google Scholar 

  22. J.A. Navio, J.J. Testa, P. Djeejeian, J.R. Padron, D. Rodriguez, and M.I. Litter, Appl. Catal. A: General 178, 191 (1999).

    Google Scholar 

  23. X. Bokhimi, A. Morales, O. Novaro, T. Lopez, E. Sanchez, and R. Gomez, J. Sold State Chem. 122, 309 (1996).

    Google Scholar 

  24. R.D. Gonzalez, T. Lopez, and R. Gomez, Catal. Today 35, 193 (1997).

    Google Scholar 

  25. T. Lopez, R. Gomez, G. Pecchi, P. Reyes, X. Bokhimi, and O. Novaro, Mater. Letts. 40, 59 (1999).

    Google Scholar 

  26. R. Gomez, T. Lopez, S. Castillo, and R.D. Gonzalez, J. Sol-Gel Science and Technol. 1, 205 (1994).

    Google Scholar 

  27. X. Bokhimi, O. Novaro, R.D. Gonzalez, T. Lopez, O. Chimal, A. Asomoza, and R. Gomez, J. Solid State Chem. 144, 349 (1999).

    Google Scholar 

  28. R.A. Young and R. Von Dreele, Rietveld method short course, Continuing Education, Georgia Institute of Technology, April 1993.

  29. Margarita Schneider, EDV-Verieb, Starnbergweg 18, D-8134 Pocking, Germany, 1992.

    Google Scholar 

  30. M. Nogani and A. Kato, J. Sol-Gel Science and Technol. 2, 751 (1994).

    Google Scholar 

  31. A.J. Dekker, Solid State Physics (MACMillan Ed., New York, 1970), p. 354.

    Google Scholar 

  32. D.F. Ollis, E. Pelizzetti, and N. Serpone, in Photocatalysis: Fundamentals and Applications, edited by N. Serpone and E. Pelizzetti (John Wiley & Sons, New York, 1998), Ch. 18, p. 620.

    Google Scholar 

  33. D.H. Everet, Colloid Science (The Chemical Society Burlington House, London, V1, Adiar & Sons Ltd., 1973).

    Google Scholar 

  34. S.J. Gerg and K.S.W. Sing, Adsorption Surface Area and Porosity, 2nd ed. (Academic Press, New York, 1995). Appendix.

    Google Scholar 

  35. C.J. Brinker and G.W. Sherer, The Sol-Gel Science (Academic Press, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, T., Gomez, R., Sanchez, E. et al. Photocatalytic Activity in the 2,4-Dinitroaniline Decomposition Over TiO2 Sol-Gel Derived Catalysts. Journal of Sol-Gel Science and Technology 22, 99–107 (2001). https://doi.org/10.1023/A:1011272521955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011272521955

Navigation