Skip to main content
Log in

Sol-Gel Processed TiO2-Based Nano-Sized Powders for Use in Thick-Film Gas Sensors for Atmospheric Pollutant Monitoring

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol-gel routes were used to prepare pure and 5 at% and 10 at% Ta- or Nb-dope TiO2 nano-sized powders. The thermal decomposition behaviour of the precursors was studied using simultaneous thermogravimetric and differential thermal analysis (TG/DTA). X-ray diffraction (XRD) analysis showed that the powders heated to 400°C were crystalline in the anatase TiO2 structure. The pure TiO2 powder heated to 850°C showed the rutile structure. The addition of Ta and Nb inhibited the anatase-to-rutile phase transformation up to 950–1050°C. Ta was soluble in the titania lattice up to the concentration of 10 at%, while the solubility of Nb was 5 at%. Thick films were fabricated with these powders by screen printing technology and then fired for 1 h at different temperatures in the 650–1050°C range. Scanning electron microscopy (SEM) observations showed that the anatase-to-rutile phase transformation induces a grain growth of about one order of magnitude for pure TiO2. The addition of Ta and Nb is effective to keep the TiO2 grain size at a nanometric level even at 950°C, though grain growth was observed with increasing temperature. The gas-sensitive electrical response of the thick films were tested in laboratory, in environments with CO in dry and wet air. Conductance measurements showed a good gas response only for the nanostructured titania-based films. For field tests, the prototype sensors were placed beside a conventional station for atmospheric pollutant monitoring. The electrical response of the thick films was compared with the results of the analytical instruments. The same trend was observed for both systems, demonstrating the use of gas sensors for this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Traversa, J. Am. Ceram. Soc. 78, 2625 (1995).

    Google Scholar 

  2. N. Yamazoe and N. Miura, IEEE Trans. Compon., Packag., Manuf. Technol. A 18, 252 (1995).

    Google Scholar 

  3. E. Traversa, in Progress in Ceramic Basic Science: Challenge Toward the 21st Century, edited by T. Hirai, S.I. Hirano, and Y. Takeda (The Basic Science Division, The Ceramic Society of Japan, Tokyo, Japan, 1996), p. 145.

    Google Scholar 

  4. T. Seiyama, A. Kato, K. Fujiishi, and N. Nagatani, Anal. Chem. 34, 1502 (1962).

    Google Scholar 

  5. N. Taguchi, Japanese Patent Application No. 45-38200 (1962).

  6. Y. Shimizu and M. Egashira, MRS Bull. 24(6), 18 (1999).

    Google Scholar 

  7. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B 3, 147 (1991).

    Google Scholar 

  8. G. Williams and G.S.V. Coles, MRS Bull. 24(6), 25 (1999).

    Google Scholar 

  9. E. Traversa, J. Intelligent Mater. Systems and Structures 6, 860 (1995).

    Google Scholar 

  10. C.N.R. Rao, J. Mater. Chem. 9, 1 (1999).

    Google Scholar 

  11. H. Hahn, Nanostruct. Mater. 2, 251 (1993).

    Google Scholar 

  12. J.Y. Ying and T. Sun, J. Electroceram. 1, 219 (1997).

    Google Scholar 

  13. J.Y. Ying, Sol-Gel Derived Materials, Chem. Mater. special issue 9, 2247 (1997).

  14. I. Chen, L. Gao, J. Huang, and D. Yan, J. Mater. Sci. 31, 3497 (1996).

    Google Scholar 

  15. Y. Xu, K. Yao, X. Zhou, and Q. Cao, Sensors and Actuators B 14, 492 (1993).

    Google Scholar 

  16. R.K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Appl. Surf. Sci. 92, 647 (1996).

    Google Scholar 

  17. H. Tang, K. Prasad, R. Sanjinées, and F. Lévy, Sensors and Actuators B 26/27, 71 (1995).

    Google Scholar 

  18. M.C. Carotta, M.A. Butturi, G. Martinelli, M.L. Di Vona, S. Licoccia, and E. Traversa, Electron Technol. 33, 113 (2000).

    Google Scholar 

  19. E. Traversa, M.L. Di Vona, S. Licoccia, M. Sacerdoti, M.C. Carotta, M. Gallana, and G. Martinelli, J. Sol-Gel Sci. Technol. 19, 193 (2000).

    Google Scholar 

  20. D.C. Hague and M.J. Mayo, J. Am. Ceram. Soc. 77, 1957 (1994).

    Google Scholar 

  21. G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, and E. Traversa, Sensors and Actuators B 55, 99 (1999).

    Google Scholar 

  22. G. Martinelli, M.C. Carotta, E. Traversa, and G. Ghiotti, MRS Bull. 24(6), 30 (1999).

    Google Scholar 

  23. E. Traversa, Y. Sadaoka, M.C. Carotta, and G. Martinelli, Sensors and Actuators B 65, 181 (2000).

    Google Scholar 

  24. M.C. Carotta, G. Martinelli, L. Crema, M. Gallana, M. Merli, G. Ghiotti, and E. Traversa, Sensors and Actuators B 68, 1 (2000).

    Google Scholar 

  25. G. Martinelli and M.C. Carotta, Sensors and Actuators B 23, 157 (1995).

    Google Scholar 

  26. N.M. White and J.D. Turner, Meas. Sci. Technol. 8, 1 (1997).

    Google Scholar 

  27. R.A. Young, A. Sakthivel, T.S. Moss, and C.O. Paiva-Santos, J. Appl. Cryst. 28, 366 (1995).

    Google Scholar 

  28. M.C. Carotta, C. Dallara, G. Martinelli, L. Passari, and A. Camanzi, Sensors and Actuators B 3, 191 (1991).

    Google Scholar 

  29. M.K. Akhtar, S.E. Pratsinis, and S.V.R. Mastrangelo, J. Am. Ceram. Soc. 75, 3408 (1992).

    Google Scholar 

  30. S.R. Morrison, Sensors and Actuators 2, 329 (1982).

    Google Scholar 

  31. V. Lantto, P. Romppainen and S. Leppävuori, Sensors and Actuators 14, 149 (1988).

    Google Scholar 

  32. P.K. Clifford and D.T. Tuma, Sensors and Actuators 3, 255 (1982/83).

    Google Scholar 

  33. E. Traversa, Sensors and Actuators B 23, 135 (1995).

    Google Scholar 

  34. E. Traversa, S. Villanti, G. Gusmano, H. Aono, and Y. Sadaoka, J. Am. Ceram. Soc. 82, 2442 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traversa, E., Di Vona, M.L., Licoccia, S. et al. Sol-Gel Processed TiO2-Based Nano-Sized Powders for Use in Thick-Film Gas Sensors for Atmospheric Pollutant Monitoring. Journal of Sol-Gel Science and Technology 22, 167–179 (2001). https://doi.org/10.1023/A:1011236908751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011236908751

Navigation