Skip to main content
Log in

Hydroxyapatite implants with designed internal architecture

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous hydroxyapatite (HA) has been used as a bone graft material in the clinics for decades. Traditionally, the pores in these HAs are either obtained from the coralline exoskeletal patterns or from the embedded organic particles in the starting HA powder. Both processes offer very limited control on the pore structure. A new method for manufacturing porous HA with designed pore channels has been developed. This method is essentially a lost-mold technique with negative molds made with Stereolithography and a highly loaded curable HA suspension as the ceramic carrier. Implants with designed channels and connection patterns were first generated from a Computer-Aided-Design (CAD) software and Computer Tomography (CT) data. The negative images of the designs were used to build the molds on a stereolithography apparatus with epoxy resins. A 40 vol% HA suspension in propoxylated neopentyl glycol diacrylate (PNPGDA) and iso-bornyl acrylate (IBA) was formulated. HA suspension was cast into the epoxy molds and cured into solid at 85 °C. The molds and acrylate binders were removed by pyrolysis, followed by HA green body sintering. With this method, implants with six different channel designs were built successfully and the designed channels were reproduced in the sintered HA implants. The channels created in the sintered HA implants were between 366 μm and 968 μm in diameter with standard deviations of 50 μm or less. The porosity created by the channels were between 26% and 52%. The results show that HA implants with designed connection pattern and well controled channel size can be built with the technique developed in this study. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench, J. Am. Ceram. Soc. 81 (1998) 1705.

    Google Scholar 

  2. E. Shors and R. Holmes, in “An Introduction to Bioceramics” edited by L. L. Hench and J. Wilson (World Scientific, Singapore, 1993) p. 181.

    Google Scholar 

  3. M. El Deeb and R. Holmes, J. Oral Maxillofac. Surg. 47 (1989) 1282.

    Google Scholar 

  4. R. E. Holmes, Plast. Reconstruct. Surg. 63 (1979) 626.

    Google Scholar 

  5. R. Holmes, V. Mooney, R. Bucholz and A. Tencer, Clin. Orthoped. 188 (1983) 252.

    Google Scholar 

  6. C. A. Van Blitterswijk, J. J. Grote, W. Kuijpers, W. T. Dames and K. De Groot, Biomaterials 7 (1986) 137.

    Google Scholar 

  7. R. A. Ayers, S. J. Simske, C. R. Nunes and L. M. Wolford, J. Oral Maxillofac. Surg. 56 (1998) 1297.

    Google Scholar 

  8. D. M. Roy and S. K. Linnehan, Nature 247 (1974) 220.

    Google Scholar 

  9. J.-H. KÜhne, R. Bartl, B. Frisch, C. Hammer, V. Jansson and M. Zimmer, Acta Orthop. Scand. 65 (1994) 246.

    Google Scholar 

  10. U. Ripamonti, S. Ma and A. Reddi, Matrix 12 (1992) 202.

    Google Scholar 

  11. D.-M. Liu, Ceram. Int. 23 (1997) 135.

    Google Scholar 

  12. Idem., J. Mater. Sci. Lett. 15 (1996) 419.

    Google Scholar 

  13. J. Bouler, M. Trecant, J. Delecrin, J. Royer, N. Passuti and G. Daculsi, J. Biomed. Mater. Res. 32 (1996) 603.

    Google Scholar 

  14. E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka and Y. Kuboki, J. Biochem. 121 (1997) 317.

    Google Scholar 

  15. R. Fedchenko, in “Stereolithography and other RP&M Technologies”, edited by P. Jacobs (ASME Press, Dearborn, MI, 1996) p. 2.

    Google Scholar 

  16. H. Anderi, D. Zur Nedden, W. Muhlbauer, K. Twerdy, E. Zanon, K. Wicke and R. Knapp, Brit. J. Plast. Surg. 47 (1994) 60.

    Google Scholar 

  17. T. Barker, W. Earwaker, N. Frost and G. Wakeley, Aust. Phys. Sci. Med. 16 (1993) 79.

    Google Scholar 

  18. N. Mankovich, A. Cheeseman and N. Stoker, J. Digital Imaging 3 (1990) 200.

    Google Scholar 

  19. H. Klein, W. Schneider, G. Alzen, E. Voy and R. Gunther, Pediatr. Radiol. 22 (1992) 458.

    Google Scholar 

  20. K. Venkataswamy, R. Waack, B. Novich and J. Halloran, (1990) U.S. Patent 4,978,643.

  21. M. A. Janney, (1990) U.S. Patent 4,894,194.

  22. A. C. Young, O. O. Omatete, M. A. Janney and P. A. Menchhofer, J. Am. Ceram. Soc. 74 (1991) 612.

    Google Scholar 

  23. T.-M. G. Chu and J. Halloran, J. Am. Ceram. Soc. 83 (2000) 237.

    Google Scholar 

  24. S. Hollister, T. M. Chu, R. E. Guldberg, P. K. Zysset, R. A. Levy, J. W. Halloran and S. E. Feinberg, in “IUTAM Synthesis in Biosolid Mechanics”, edited by P. Pedersen and M. Bendsoe (Kluwer Press, 1998) in press.

  25. B. Fowler, Inorg. Chem. 13 (1974) 194.

    Google Scholar 

  26. J. Elliott, in “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates”, edited by J. Elliott, (Elsevier, New York, 1994) p. 179.

    Google Scholar 

  27. T.-M. G. Chu and J. Halloran, J. Am. Ceram. Soc. 83 (2000) 2189.

    Google Scholar 

  28. G. Daculsi and N. Passuti, Biomaterials 11 (1990) 86.

    Google Scholar 

  29. O. Gauthier, J. Bouler, E. Aguado, P. Pilet, and G. Daculsi, ibid. 19 (1998) 133.

    Google Scholar 

  30. A. Ruys, M. Wei, C. Sorrell, M. Dickson, A. Brandwood and B. Milthorpe, ibid. 16 (1995) 409.

    Google Scholar 

  31. A. Ruys, C. Sorrell, A. Brandwood and B. Milthorpe, J. Mater. Sci. Lett. 14 (1995) 744.

    Google Scholar 

  32. T. Kijima and M. Tsutsumi, J. Am. Ceram. Soc. 62 (1979) 455.

    Google Scholar 

  33. P. Ducheyne, S. Radin and L. King, J. Biomed. Mater. Res. 27 (1993) 25.

    Google Scholar 

  34. S. R. Radin and P. Ducheyne, ibid. 27 (1993) 35.

    Google Scholar 

  35. M. Jarcho, Clin. Orthoped. 157 (1981) 259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, TM.G., Halloran, J.W., Hollister, S.J. et al. Hydroxyapatite implants with designed internal architecture. Journal of Materials Science: Materials in Medicine 12, 471–478 (2001). https://doi.org/10.1023/A:1011203226053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011203226053

Keywords

Navigation