Skip to main content
Log in

Alterations in Adrenergic Receptor Signaling in Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In the failing heart, several changes occur in cardiac adrenergic receptor-signal transduction pathways. The most striking of these changes occur in β-ARs, and of the changes in β-adrenergic receptors, β1-receptor down-regulation is the most prominent. Other changes include uncoupling of β2-adrenergic receptors and increased activity of the inhibitory G-protein, Gi. Most of these changes appear to be related to increased activity of the adrenergic nervous system, i.e. increased exposure to norepinephrine. Antagonists of the adrenergic nervous system improve left ventricular function and outcome in patients with heart failure. This fact supports the notion that activation of these neurohormonal systems exerts a net long-term detrimental effect on the natural history of chronic heart failure and that myocardial adrenergic desensitization phenomena are at least partially adaptive in the setting of left ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure. Am J Cardiol 1978;41:233–243.

    Google Scholar 

  2. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982;49:1659–1666.

    Google Scholar 

  3. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986;73:615–621.

    Google Scholar 

  4. Davis D, Baily R, and Zelis R. Abnormalities in systemic norepinephrine kinetics in human congestive heart failure. Am J Physiol 1988;254:E760–E766.

    Google Scholar 

  5. Abraham WT, Hensen J, Schrier RW. Elevated plasma noradrenaline concentrations in patients with lowoutput cardiac failure: dependence on increased noradrenaline secretion rates. Clin Sci 1990;79:429–435.

    Google Scholar 

  6. Francis GS, Benedict C, Johnstone EE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 1990;82: 1724–1729.

    Google Scholar 

  7. Rundquist B, Elam M, Bergmann-Sverrisdottir Y, et al. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 1997;95:169–175.

    Google Scholar 

  8. Katz AM. Interplay between inotropic and lusitropic effects of cyclic adenosine monophosphate on the myocardial cell. Circulation 1990;82(suppl. 1):7–11.

    Google Scholar 

  9. Walsh RA. Sympathetic control of diastolic function in congestive heart failure. Circulation 1990;82(suppl. 2):152–158.

    Google Scholar 

  10. Abraham WT, Schrier RW. Renal salt and water handling in congestive heart failure. In: Hosenpud JD, Greenberg JH, eds. Congestive Heart Failure: Pathophysiology, Diagnosis, and Comprehensive Approach to Management. New York: Springer-Verlag, 1994:161–173.

    Google Scholar 

  11. Starksen NF, Simpson PC, Bisphoric N, et al. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA 1986;83:8348–8350.

    Google Scholar 

  12. Rona G, Chappel CL, Balazs T, et al. An infarct like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch Pathol 1959;67:443–455.

    Google Scholar 

  13. Cruickshank JM, Neil-Dwyer G, Degaute JP, et al. Reduction of stress/catecholamine induced cardiac necrosis by beta-1 selective blockade. Lancet 1987;2:585–589.

    Google Scholar 

  14. Fleckenstein A, Janke J, Doring HJ, et al. Ca++ overload as the determinant factor in the production of catecholamine-induced myocardial lesions. Recent Adv Stud Cardiac Struct Metab 1973;2:455–468.

    Google Scholar 

  15. Mann DL, Kent RL, Parsons B, Cooper G, IV. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992;85:790–804.

    Google Scholar 

  16. Cohn JN, Levine B, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819–823.

    Google Scholar 

  17. Packer M, Bristow MR, Cohn JN, et al, for the US Carvedilol Heart Failure Study Group. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996;334:1349–1355.

    Google Scholar 

  18. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomized trial. Lancet 1999;353:9–13.

    Google Scholar 

  19. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353:2001–2007.

    Google Scholar 

  20. Bristow MR, Gilbert EM, Abraham WT, et al, for the MOCHA Investigators. Carvedilol produces doserelated improvements in left ventricular function and survival in subjects with chronic heart failure. Circulation 1996;94:2807–2816.

    Google Scholar 

  21. Ahlquist R. A study of the adrenotropic receptors. Am J Physiol 1948;153:586–600.

    Google Scholar 

  22. Bristow MR, Sandoval AB, Gilbert EM, et al. Myocardial alpha and beta adrenergic receptors in heart failure: is cardiac-derived norepinephrine the regulatory signal? Eur Heart J 1988;9:35–40.

    Google Scholar 

  23. Bristow MR, Minobe W, Rasmussen R, et al. Alpha-1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 1988;247:1039–1045.

    Google Scholar 

  24. Widén E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of apolymorphism in the ? 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med 1995;333:348–351.

    Google Scholar 

  25. Clément K, Vaisse C, Manning B, et al. Genetic variation in the ? 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 1995;333:352–354.

    Google Scholar 

  26. Gilman AG. G proteins: transducers of receptor generated signals. Ann Rev Biochem 1987;56:615–649.

    Google Scholar 

  27. Crespo P, Cachero TG, Xu N, and Gutkind JS. Dual effect of ?-adrenergic receptors on mitogen-activated protein kinase: evidence for a ??-dependent activation and a G?s-cAMP-mediated inhibition. J Biol Chem 1995;270:25259–25265.

    Google Scholar 

  28. Bristow MR, Hershberger RE, Port JD, Minobe W, and Rasmussen R. ?1 & ?2 adrenergic receptor mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharm 1989;35:295–303.

    Google Scholar 

  29. Kaumann AJ, and Lemoine H. ? 2-adrenoceptormediated positive inotropic effect of adrenaline in human ventricular myocardium: quantitative discrepancies with binding and adenylate cyclase stimulation. Naunyn-Schmiedeberg Arch Pharmacol 1987;335:403–411.

    Google Scholar 

  30. Bristow MR, Anderson FL, Port JD, Skerl L, Hershberger RE, et al. Differences in ?-adrenergic neuroeffector mechanisms is ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991;84:1024–1039.

    Google Scholar 

  31. Bristow MR, Ginsberg R, Fowler M, et al. ?1-and ?2-adrenergic receptor subtype populations in normal and failing human ventricular myocardium. Circ Res 1986;59:297–309.

    Google Scholar 

  32. Brodde O-E, Zerkowski HR, Doetsch N, Motomura S, Khamssi M, and Michel MC. Myocardial beta-adrenoceptor changes in heart failure: concomitant reduction in beta1-and beta2-adrenoceptor function related to the degree of heart failure in patients with mitral valve disease. J Am Coll Cardiol 1989;14:323–331.

    Google Scholar 

  33. Fowler MB, Laser JA, Hopkins GL, et al. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive downregulation and subsensitivity to agonist response. Circulation 1986;74:1290–1302.

    Google Scholar 

  34. Hausdorff WP, Caron MG, and Lefkowitz RJ. Turning off the signal: desensitization of ?-adrenergic receptor function. FASEB J 1990;4:2881–2889.

    Google Scholar 

  35. Bouvier M, Collins S, O'Dowd BF, et al. Two distinct pathways for cAMP-mediated down-regulation of the ? 2-adrenergic receptor: phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 1989;264:16786–16792.

    Google Scholar 

  36. Freedman NJ, Ligget SB, Drachman DE, Pei G, Caron MG, Lefkowitz, RJ. Phosphorylation and desensitization of the human ? 1-adrenergic receptor. J Biol Chem 1995;270:17953–17961.

    Google Scholar 

  37. Ungerer M, Bohm M, Elce S, Erdmann E, Lohse MJ. Altered expression of ?-adrenergic receptor kinase and ? 1-adrenergic receptors in the failing human heart. Circulation 1993;87:454–463.

    Google Scholar 

  38. Feldman AM, Gates AE, Veazey WB, et al. Increase of the Mr 40,000 pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 1988;82:189–197.

    Google Scholar 

  39. Bristow MR, Minobe W, Rasmussen R, et al. ?-adrenergic neuroeffector abnormalities in the failing human heart are produced by local, rather than systemic mechanisms. J Clin Invest 1992;89:803–815.

    Google Scholar 

  40. Huang L, Tholanikunnel BG, Vakalopoulou E, et al. The M(r) 35,000 beta-adrenergic receptor mRNA-binding protein induced by beta agonists requires both an AUUUA pentamer and U-rich domains for RNA recognition. J Biol Chem 1993;268:25769–25775.

    Google Scholar 

  41. Port JD, Huang LY, Malbon CC. Beta receptor agonists that downregulate receptor mRNA upregulate a M(r) 35,000 protein(s) that selectively binds to beta adrenergic receptor mRNAs. J Biol Chem 1992;267:24103–24108.

    Google Scholar 

  42. Pende A, Mitchusson KD, DeMaria CT, et al. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway. J Biol Chem 1996;271:8493–8501.

    Google Scholar 

  43. Bristow MR, Herschberger RE, Port JD, et al. Beta-1 and beta-2 adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 1989;35:295–303.

    Google Scholar 

  44. Port JD, Gilbert EM, Larrabee P, et al. Neurotransmitter depletion compromises the ability of indirectacting amines to provide inotropic support in the failing human heart. Circulation 1990;81:929–938.

    Google Scholar 

  45. Bristow MR, Hershberger RE, Port JD, et al. ?-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 1990;82(suppl I):12–25.

    Google Scholar 

  46. Linden J, Patel A, Spanier AM, Weglicki WB. Rapid agonist-induced decrease of 125I-pindolol binding to ?-adrenergic receptors: relationship to desensitization of cyclic AMP accumulation in intact heart cells. J Biol Chem 1984;259:15115–15122.

    Google Scholar 

  47. Bobik A, Campbell JH, Carson V, Campbell GR. Mechanism of isoprenaline-induced refractoriness of the ?-adrenoceptor-adenylate cyclase system in chick embryo cardiac cells. J Cardiovasc Pharmacol 1981;3:541–553.

    Google Scholar 

  48. Reithmann C, Werdan K. Homologous vs. heterologous desensitization of the adenylate cyclase system in heart cells. Eur J Pharmacol 1988;154:99–104.

    Google Scholar 

  49. Sandoval A, Gilbert EM, Ginsburg R, et al. ? 1 receptor down-regulation in the failing human heart: the result of exposure to cardiac derived norepinephrine? J Am Coll Cardiol 1988;11:117A.

    Google Scholar 

  50. Heilbrunn SM, Shaw P, Bristow MR, Valantine JA, Ginsburg R, Fowler MB. Increased ?-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 1989;79:483–490.

    Google Scholar 

  51. Waagstein F, Caidahl K, Wallentin I, Bergh CH, Hjalmarson Å. Long-term beta-blockade in dilated cardiomyopathy: effects of short-and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 1989;80:551–563.

    Google Scholar 

  52. Hall JA, Petch MC, Brown MJ. In vivo demonstration of cardiac ? 2-adrenoreceptor sensitization by ? 1-antagonist treatment. Circ Research 1991;69:959–964.

    Google Scholar 

  53. Gilbert EM, Sandoval A, Larrabee P, Renlund DG, O'Connell JB, Bristow MR. Lisinopril lowers cardiac adrenergic drive and increases ?-receptor density in the failing human heart. Circulation 1993;88:472–480.

    Google Scholar 

  54. Turki J, Lorenz JN, Green SA, Donnelly ET, Jacinto M, Liggett SB. Myocardial signaling defects and impaired cardiac function of a human ? 2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci USA 1996;93:10483–10488.

    Google Scholar 

  55. McGraw DW, Forbes SL, Kramer LA, Liggett SB. Polymorphisms of the 50 leader cistron of the human ? 2-adrenergic receptor regulate receptor expression. J Clin Invest 1998;102:1927–1932.

    Google Scholar 

  56. Liggett SB, Wagoner LE, Craft LL, et al. The Ile 164 ? 2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998;102:1534–1539.

    Google Scholar 

  57. Wagoner LE, Craft LL, Abraham WT, Zengel PW, Hornung RW, Liggett SB. The Ile 164 ? 2-adrenergic receptor polymorphism is associated with decreased exercise capacity in patients with heart failure. Circulation 1999;100(suppl. I):I–247.

    Google Scholar 

  58. Kadambi VJ, Ponniah S, Harrer JM, et al. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenicmice. J Clin Invest 1996;97:533–539.

    Google Scholar 

  59. Geisterfer-Lowrance AA, Christe M, Conner DA, et al. A mouse model of familial hypertrophy cardiomyopathy. Science 1996;272:731–734.

    Google Scholar 

  60. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Sci USA 1999;96:7059–7064.

    Google Scholar 

  61. Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 1994;264:582–586.

    Google Scholar 

  62. Iwase M, Bishop SP, Uechi M, et al. Adverse effects of chronic endogenous sympathetic drive induced by cardiac Gs alpha overexpression. Circ Res 1996;78:517–524.

    Google Scholar 

  63. Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 1995;268:1350–353.

    Google Scholar 

  64. Luo W, Grupp IL, Harrer J, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 1994;75:401–409.

    Google Scholar 

  65. Arber S, Hunter JJ, Ross J Jr, et al. MLP-defficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997;88:393–403.

    Google Scholar 

  66. Rockman RA, Chien KR, Choi DJ, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in genetargeted mice. Proc Natl Sci Acad USA 1998;95:7000–7005.

    Google Scholar 

  67. Xiao, RP, Avdonin P, Zhou YY, et al. Coupling of the beta-2-adrenoreceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84:43–52.

    Google Scholar 

  68. Fedida D, Braun AP, Giles WR. ?1-adrenoceptors in myocardium: functional aspects and transmembrane signaling mechanisms. Physiological Reviews 1993;73:469–487.

    Google Scholar 

  69. Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. Localization of mRNA for three distinct alpha-1 adrenergic receptor subtypes in human tissues: implications for human alpha-adrenergic physiology. Mol Pharmacol 1994;45:171–175.

    Google Scholar 

  70. Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of ?-adrenergic receptor function. FASEB J 1990;4:2881–2889.

    Google Scholar 

  71. Ruffolo RR, Hollinger MA, eds. G-protein Coupled Transmembrane Signaling Mechanisms. Boca Raton, FL: CRC Press. 1995:1–34.

    Google Scholar 

  72. Milano CA, Dolber PC, Rockman RA, et al. Myocardial expression of a constitutively active alpha 1b-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994;91:10109–10113.

    Google Scholar 

  73. LaMorte VJ, Thorburn J, Absher D, et al. Gq-and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J Biol Chem 1994;269:13490–13496.

    Google Scholar 

  74. D'Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic G?q overexpression induces cardiac failure in mice. Proc Natl Acad Sci USA 1998;94:8121–8126.

    Google Scholar 

  75. Adams JW, Sakata Y, Davis MG, et al. Enhanced Gaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998;95:10140–10145.

    Google Scholar 

  76. Gruver CL, DeMayo F, Goldstein MA, Means AR. Targeted developmental overexpression of calmomodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 1993;133:376–388.

    Google Scholar 

  77. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215–228.

    Google Scholar 

  78. Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer AJ. Transient cardiac expression of constitutively active Gaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 1998;95:13893–13898.

    Google Scholar 

  79. Hunter JJ, Grace AA, Chien KR. Molecular and cellular biology of cardiac hypertrophy and failure. In Chien KR, ed. Molecular Basis of Heart Disease: A Companion to Braunwald's Heart Disease. Philadelphia: W.B. Saunders, 1999:211–250.

    Google Scholar 

  80. Wang Y, Huang S, Sah VP, et al. Cardiac muscle hypertrophy and apoptosis induced by distinct members of the p38 mitogen protein kinase family. J Biol Chem 1998;273:2161–2168.

    Google Scholar 

  81. Wang Y, Sah VP, Brown JH, Han J, Chien KR. Cardiac hypertrophy induced by mitogen-activated protein kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 1998;273:5423–5426.

    Google Scholar 

  82. Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chein KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway: divergence from downstream CT-1 signals for myocardial hypertrophy. J Biol Chem 1997;272:5783–5791.

    Google Scholar 

  83. Bohm M, Diet F, Feiler G, Kemkes B, Erdmann E. ?-adrenoceptors and ?-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J Cardiovasc Pharmacol 1988;12:357–364.

    Google Scholar 

  84. Bristow MR, Minobe W, Rassmussen R, Hershberger RE, Hoffman BB. Alpha-1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 1988;247:1039–1045.

    Google Scholar 

  85. Bristow MR, Gilbert EM. Improvement on cardiac myocyte function by biological effects of medical therapy: a new concept in the treatment of heart failure. Eur Heart J 1995;16(Suppl F):20–31.

    Google Scholar 

  86. Jahnel U, Jakob H, Nawrath H. Electrophysiologic and inotropic effects of alpha-adrenoceptor stimulation in human isolated atrial heart muscle. Naunyn Schmiedebergs Arch Pharmacol 1992;346:82–87.

    Google Scholar 

  87. Schwinger RH, Bohm M, Mittmann C, LaRosee K, Erdmann E. Evidence for a sustained effectiveness of sodium-channel activators in failing human myocardium. J Mol Cell Cardiol 1991;23:461–471

    Google Scholar 

  88. Gilbert EM, Abraham WT, Olsen S, et al. Comparative hemodynamic, LV functional, and anti-adrenergic effects of chronic treatment with metoprolol and carvedilol in the failing human heart. Circulation 1996;94:2817–2825.

    Google Scholar 

  89. Metra M, Nodari S, D'Aloia A, et al. Effects of chronic ?-blockade on the haemodynamics and functional capacity of patients with heart failure: a randomized comparison between metoprolol and carvedilol. Eur Heart J 1998;19(suppl):307.

    Google Scholar 

  90. DiLenarda A, Sabbadini G, Salvatore L, et al. Longterm effects of carvedilol in dilated cardiomyopathy with persistent left ventricular dysfunction despite chronic metoprolol. J Am Coll Cardiol 1999;33:1926–1934.

    Google Scholar 

  91. Abraham WT, Tsvetkova T, Lowes BD, et al. Carvedilol improves renal hemodynamics in patients with chronic heart failure. Circulation 1998;98(suppl):378–9.

    Google Scholar 

  92. Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure: results of a Veterans Administration cooperative study. N Engl J Med 1986;314:1547–1552.

    Google Scholar 

  93. Colucci WS, Williams GH, and Braunwald E. Increased plasma norepinephrine levels during prazosin therapy for severe congestive heart failure. Ann Intern Med 1980;93:452–453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamba, S., Abraham, W.T. Alterations in Adrenergic Receptor Signaling in Heart Failure. Heart Fail Rev 5, 7–16 (2000). https://doi.org/10.1023/A:1009885822076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009885822076

Navigation