Skip to main content
Log in

Nutrient concentration in shape Sphagna at increased N-deposition rates and raised atmospheric CO2 concentrations

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Sphagnum fuscum, S. magellanicum, S. angustifolium and S. warnstorfii were treated with N deposition rates (0, 10, 30 and 100 kg ha-1 a-1) and with four atmospheric CO2 concentrations (350, 700, 1000 and 2000 ppm) in greenhouse for 71–120 days. Thereafter, concentrations of total N, P, K, Ca and Mg in the capitulae of the Sphagna were determined. The response of each species to N deposition was related to ecological differences. With increasing N deposition treatments, moss N concentrations increased and higher N:P-ratios were found, the increase being especially clear at the highest N load. Sphagnum fuscum, which occupies ombrotrophic habitats, was the most affected by the increased nitrogen load and as a consequence the other elements were decreased. Oligotrophic S. magellanicum, wide nutrient status tolerant S. angustifolium and meso-eutrophic S. warnstorfii tolerated better increased N deposition, though there were increased concentrations of Ca and Mg in S. warnstorfii and Mg in S. magellanicum. Nitrogen and P concentrations decreased with raised CO2 concentrations, except for S. magellanicum. This seems to be the first time this kind of response in nutrient concentrations to enhanced CO2 concentration has been shown to exist in bryophytes. The concentration of K clearly decreased in S. fuscum as did the concentration of Mg in the other Sphagna with increasing CO2. Sphagnum angustifolium and S. magellanicum, which are the less specialized species, were the least affected by the CO2 treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, R., Wallén, B. & Malmer, N. 1992. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 80: 131-140.

    Google Scholar 

  • Bazzaz, F. A. 1990. The response of natural ecosystems to the rising global CO2 levels. Ann. Rev. Ecol. Syst. 21: 167-196.

    Google Scholar 

  • Coleman, J. S. & Bazzaz, F. A. 1992. Effects of CO2 and temperature on growth and resource use of co-occurring C3 and C4 annuals. Ecology 73: 1244-1259.

    Google Scholar 

  • Coleman, J. S., McConnaughay, K. D. M. & Bazzaz, F. A. 1993. Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93: 195-200.

    Google Scholar 

  • Crum, H. A. 1976. Mosses of the Great Lakes Forest, Revised edition. University Herbarium, Ann Arbor, MI.

    Google Scholar 

  • Curtis, P. S., Baldmann L. M., Drake, B. G. & Whigman, D. F. 1990. Elevated atmospheric CO2 effects on belowground processes in C3 and C4 estuarine communities. Ecology 71: 2001-2006.

    Google Scholar 

  • Damman, A. W. H. 1978. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30: 480-495.

    Google Scholar 

  • Damman, A. W. H. 1986. Hydrology, development, and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog. Canadian J. Bot. 64: 384-394.

    Google Scholar 

  • Damman, A. W. H. 1988a. Regulation of nitrogen removal and retention in Sphagnum bogs and other peatlands. Oikos 51: 291-305.

    Google Scholar 

  • Damman, A. W. H. 1988b. Spatial and seasonal changes in water chemistry and vegetation in an ombrogenous bog. pp. 107-119. In: Verhoeven, J. T. A., Heil, G. W. & Werger, M. J. A. (eds), Vegetation structure in relation to carbon and nutrient economy. SBP Academic Publishing, The Netherlands.

    Google Scholar 

  • Deising, H. & Rudolph, H. 1987. Nitrate-induced de novo synthesis and regulation of NAD(P)H nitrate reductase from Sphagnum. Physiol. Plant. 71: 477-482.

    Google Scholar 

  • Drake, B. G., Muehe, M. S., Peresta, G., Gonzàlez-Meler, M. A. & Matamala, R. 1996. Acclimation of photosynthesis, respiration and ecosystem carbon flux of wetland on Chesapeake Bay, Maryland to elevated atmospheric CO2 concentration. Plant Soil 187: 111-118.

    Google Scholar 

  • Eamus, D. & Jarvis, B. G. 1989. The direct effect of increase in global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv. Ecol. Res. 19: 1-55.

    Google Scholar 

  • Ferguson, P., Robinson, R. N., Press, M. C. & Lee, J. A. 1984. Element concentrations in five Sphagnumspecies in relation to atmospheric pollution. J. Bryol. 13: 107-114.

    Google Scholar 

  • Gerdol, R. 1990. Seasonal variations in the element concentrations in mire water and in Sphagnummosses on an ombrotrophic bog in the southern Alps. Lindbergia 16: 44-50.

    Google Scholar 

  • Goudriaan, J. & de Ruiter, H. E. 1983. Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development. Neth. J. Agric. Sci. 31: 157-169.

    Google Scholar 

  • Gorham, E. 1956. On the chemical composition of some waters from the Moor House Nature Reserve. J. Ecol. 44: 375-382.

    Google Scholar 

  • Hocking, P. J. & Meyer, C. P. 1985. Responses of Noogoora Burr (Xanthium occidentaleBertol.) to Nitrogen Supply and Carbon Dioxide Enrichment. Ann. Bot. 55: 835-844.

    Google Scholar 

  • Hogg, E. H., Malmer, N. & Wallén, B. 1994. Microsite and regional variation in the potential decay rate of Sphagnum magellanicumin south Swedish raised bogs. Ecography 17: 50-59.

    Google Scholar 

  • Hunt, H. W., Elliot, E. T., Detling, J. K., Morgan, J. A. & Chen, D. X. 1996. Responses of C3 and C4 perennial grass to elevated CO2 and temperature under different water regimes. Global Change Biol. 2: 35-47.

    Google Scholar 

  • Hättenschwiler, S. & Körner, C. 1988. Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia 113: 104-114.

    Google Scholar 

  • Ingestad, T. 1979. Nitrogen stress in birch seedlings. II. N, K, P, Ca, and Mg nutrition. Physiol. Plant. 45: 149-157.

    Google Scholar 

  • Jauhiainen, J. & Silvola, J. 1996. The effect of elevated CO2 concentration on photosynthesis of Sphagnum fuscum. pp. 11-14. In: Laiho, R., Laine, J. & Vasander, H. (eds), Northern Peatlands in Global Climatic Change. Publications of the Academy of Finland 1/96.

  • Jauhiainen, J., Vasander, H. & Silvola, J. 1994. Response of Sphagnum fuscumto N deposition and increased CO2. J. Bryol. 18: 183-195.

    Google Scholar 

  • Jauhiainen, J., Vasander, H. & Matero, J. 1996. The effect of elevated CO2 and N-input on Sphagnawith different trophy. pp. 15-17. In: Laiho, R., Laine, J. & Vasander, H. (eds), Northern peatlands in global climatic change. Publications of the Academy of Finland 1/96.

  • Jauhiainen, J., Wallén, B. & Malmer, N. 198. Potential NH +4 and NO -3 uptake of seven Sphagnumspecies. New Phytol. 138: 287- 293.

  • Jauhiainen, J., Silvola, J., Tolonen, K. & Vasander, H. 1997. Response of Sphagnum fuscumto water levels and CO2 concentration. J. Bryol. 19: 391-400.

    Google Scholar 

  • Johnson, R. H. & Lincoln, D. E. 1991. Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO2 enrichment and soil mineral limitation. Oecologia 87: 127-134.

    Google Scholar 

  • Järvinen, O. & Vänni, T. 1990. Sadeveden pitoisuus-ja laskeumaarvot Suomessa vuonna 1990. Vesi-ja ympäristöhallituksen monistesarja. Nro 378.

  • Järvinen, O. & Vänni, T. 1991. Sadeveden pitoisuus-ja laskeumaarvot Suomessa vuonna 1991. Vesi-ja ympäristöhallituksen monistesarja. Nro 400.

  • Järvinen, O. & Vänni, T. 1992. Sadeveden pitoisuus-ja laskeumaarvot Suomessa vuonna 1992. Vesi-ja ympäristöhallituksen monistesarja. Nro 510.

  • Järvinen, O. & Vänni, T. 1994. Sadeveden pitoisuus-ja laskeumaarvot Suomessa vuonna 1994. Suomen ympäristökeskuksen moniste13.

  • Kivinen, E. 1933. Suokasvien ja niiden kasvualustan ravintoainesuhteista. Referat; Untersuchhungen über den Gehalt an Pflanzennährstoffen in Moorpflanzen und ihren Ständarten. Acta Agralia Fennica 27: 1-140.

    Google Scholar 

  • Koerselman, W. & Meuleman, A. F. M. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33: 1441-1450.

    Google Scholar 

  • Lee, J. A., Press, M. C., Woodin, S. & Ferguson, P. 1987. Responses to acidic deposition in ombrotrophic mires in the U.K. pp. 549- 560. In: Hutchinson, T. C. & Meema, K. M. (eds), Effects of Atmospheric pollutants on Forests, Wetlands and Agricultural Ecosystems. NATO ASI Series, Vol. G 16. Springer-Verlag, Berlin.

    Google Scholar 

  • Lindholm, T. & Vasander, H. 1990. Production of eight species of Sphagnumat Suurisuo mire, southern Finland. Ann. Bot. Fennici 27: 145-157.

    Google Scholar 

  • Malmer, N. 1962. Studies on mire vegetation in the archaean area of south-western Götaland (South Sweden) II. Distribution and seasonal variation in elementary constituents on some mire sites. Opera Bot. 7: 1-67.

    Google Scholar 

  • Malmer, N. 1988. Patterns in the growth and the accumulation of inorganic constituents in the Sphagnumcover on ombrotrophic bogs in Scandinavia. Oikos 53: 105-120.

    Google Scholar 

  • Malmer, N. 1990. Constant or increasing nitrogen concentrations in Sphagnummosses on mires in Southern Sweden during the last few decades. Aquilo Serie Bot. 28: 57-65.

    Google Scholar 

  • Maksimov, A. I. 1995. The use of peat botanical composition for reconstruction of ecological conditions of mire plant communities. pp. 29-35. In: Heikkilä, H. (ed.), Finnish-Karelian symposium on mire conservation and classification. Publications of National Board of Waters and the Environment, Serie A, Helsinki.

    Google Scholar 

  • Mitsch, W. J. & Gosselink, J. G. 1986. Wetlands. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Moore, P. D. & Bellamy, D. J. 1974. Peatlands. Elek Science, London. 221 p.

    Google Scholar 

  • Norby, R. J. Gunderson, C. A. Wullschleger, S. D., O'Neill E. G. & McCracken, M. K. 1992. Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature 357: 322-324.

    Google Scholar 

  • Pakarinen, P. & Ruuhijärvi, R. 1978. Ordination of northern Finnish peatland vegetation with factor analysis and reciprocal averaging. Ann. Bot. Fennici 15: 147-157.

    Google Scholar 

  • Pakarinen, P. & Tolonen, K. 1977. Nutrient contents of Sphagnummosses in relation to bog water chemistry in northern Finland. Lindbergia 4: 27-33.

    Google Scholar 

  • Poorter, H. 1993. Interspecific variation in the growth response of plants to elevated ambient CO2 concentration. Vegetatio 104/105: 77-97.

    Google Scholar 

  • Press, M. C., Woodin, S. J. & Lee, J. A. 1986. The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic Sphagnumspecies. New Phytol. 103: 45-55.

    Google Scholar 

  • Rudolph, H. & Voigt, J.U. 1986. Effects of NH4-N and NO3-N on growth and metabolism of Sphagnum magellanicum. Physiol. Plant. 66: 339-343.

    Google Scholar 

  • Rudolph, H., Hochfield, J. Jacubowski, S., von der Lage, P., Matlok, H. & Schmidt, H. 1993. Nitrogen Metabolism of Sphagnum. pp. 79-105. In: Miller, N. G. (ed.), Advances in Bryology 5, Biology of Sphagnum.

  • Sage, R. F., Sharkey, T. D. & Seeman, J. R. 1989. Acclimation of Photosynthesis to Elevated CO2 in Five C3 species. Plant Physiol. 89: 590-596.

    Google Scholar 

  • Saralabai, V. C., Vivekanadan, M. & Suresh Babu, R. 1997. Plant responses to high CO2 concentration in the atmosphere. Photosynthetica 33: 7-37.

    Google Scholar 

  • Silvola, J. 1985. CO2 dependence of photosynthesis in certain forest and peat mosses and simulated photosynthesis at various actual and hypothetical CO2 concentrations. Lindbergia 11: 86-93.

    Google Scholar 

  • Silvola, J. 1990. Combined effects of varying water content and CO2 concentration on photosynthesis in Sphagnum fuscum. Holarctic Ecol. 13: 224-228.

    Google Scholar 

  • Silvola, J. & Ahlholm, U. 1996. Effects of CO2 concentration on the nutrition of willows (Salix phylicifolia) grown at different nutrient levels in organic-rich soil. Silva Fennica 30: 221-228.

    Google Scholar 

  • Sonesson, M., Persson, S., Basilier, K. & Stenstöm, T.-A. 1980. Growth of Sphagnum ripariumÅngstr. in relation to some environmental factors in the Stordalen mire. In: Sonesson, M. (ed.) Ecology of a Subarctic Mire. Ecol. Bull. 30: 191-207.

  • Summerfield, R. J. 1974. The reliability of mire water chemical analysis data as an index of plant nutrient availability. Plant Soil 40: 97-106.

    Google Scholar 

  • Tissue, D. T., Thomas, R. B. & Strain, B. R. 1993. Long-term effect of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant, Cell Env. 16: 859-865.

    Google Scholar 

  • Tukey, H. B. 1970. The leaching of substances from plants. Ann. Rev. Plant Physiol. 21: 305-324.

    Google Scholar 

  • Van den Driessche, R. 1974. Prediction of mineral nutrient status of trees by foliar analysis. Bot. Rev. 40: 347-394.

    Google Scholar 

  • Van der Heijden, E., Jauhiainen, J., Matero, J. & Vasander, H. 1996. The effects of elevated CO2 and N-input on Sphagnumphysiology. pp. 57-58. In: Schedule and abstracts of Second International Symposium on the biology of Sphagnum. Université Laval, Québec City, Canada, July 12th-13th, 1996.

  • Verhoeven, J. T. A., Maltby, E. & Schmitz, M. B. 1990. Nitrogen and phosphorus mineralization in fens and bogs. J. Ecol. 78: 713-726.

    Google Scholar 

  • Verhoeven, J. T. A., Koerselman, W. & Meuleman, A. F. M. 1996. Nitrogen-or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Tree 11: 494-497.

    Google Scholar 

  • Vitt, D. H. & Chee, W.-L. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89: 87-106.

    Google Scholar 

  • Vogel, C. S., Curtis, P. S. & Thomas, R. B. 1997. Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa(L.) Gaertn. under elevated carbon dioxide. Plant Ecol. 130: 63-70.

    Google Scholar 

  • Vu, J. C. V., Allen, L. H. Jr & Bowes G. 1987. Drought stress and elevated CO2 effects on soybean ribulose bisphosphate carboxylase activity and canopy photosynthetic rates. Plant Physiol. 83: 573-578.

    Google Scholar 

  • Watson, R. T., Zinyowera, M. & Moss, R. M. 1996. Climate Change 1995. Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of working group II to second assessment report of the intergovernmental panel on climate change. Cambridge University press. 878 pp.

  • Waughman, G. J. 1980. Chemical aspects of the ecology of some south German peatlands. J. Ecol. 68: 1025-1046.

    Google Scholar 

  • Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthesis capacity in C3 and C4 plants. Oecologia 44: 68-74.

    Google Scholar 

  • Woodin, S. J., Press, M. C. & Lee, J. A. 1985. Nitrate reductase activity in Sphagnum fuscumin relation to wet deposition of nitrate from the atmosphere. New Phytol. 99: 381-388.

    Google Scholar 

  • Yelle, S., Beeson, R. C. Jr., Trudel, M. J. & Gosselin, A. 1989. Acclimation of two tomato species to high atmospheric CO2. II. Ribulose-1,5-bisphosphate carboxylase/oxygenase and phoshoenolpyruvate carboxylase. Plant Physiol. 90: 1473-1477.

    Google Scholar 

  • Ziska, L. H., Hogan, K. P., Smith, A. P. & Drake, B. G. 1991. Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide. Oecologia 86: 383-389.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauhiainen, J., Vasander, H. & Silvola, J. Nutrient concentration in shape Sphagna at increased N-deposition rates and raised atmospheric CO2 concentrations. Plant Ecology 138, 149–160 (1998). https://doi.org/10.1023/A:1009750702010

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009750702010

Navigation