Skip to main content
Log in

Daily and seasonal CO2 exchange in Scots pine grown under elevated O3 and CO2: experiment and simulation

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Starting in early spring of 1994, naturally regenerated, 30-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers and exposed in situ to doubled ambient O3,doubled ambient CO2 and a combination of O3 and CO2 from 15 April to 15 September. To investigate daily and seasonal responses of CO2 exchange to elevated O3 and CO2, the CO2 exchange of shoots was measured continuously by an automatic system for measuring gas exchange during the course of one year (from 1 Januray to 31 December 1996). A process-based model of shoot photosynthesis was constructed to quantify modifications in the intrinsic capacity of photosynthesis and stomatal conductance by simulating the daily CO2 exchange data from the field. Results showed that on most days of the year the model simulated well the daily course of shoot photosynthesis. Elevated O3 significantly decreased photosynthetic capacity and stomatal conductance during the whole photosynthetic period. Elevated O3 also led to a delay in onset of photosynthetic recovery in early spring and an increase in the sensitivity of photosynthesis to environmental stress conditions. The combination of elevated O3 and CO2 had an effect on photosynthesis and stomatal conductance similar to that of elevated O3 alone, but significantly reduced the O3-induced depression of photosynthesis. Elevated CO2 significantly increased the photosynthetic capacity of Scots pine during the main growing season but slightly decreased it in early spring and late autumn. The model calculation showed that, compared to the control treatment, elevated O3 alone and the combination of elevated O3 and CO2 decreased the annual total of net photosynthesis per unit leaf area by 55% and 38%, respectively. Elevated CO2 increased the annual total of net photosynthesis by 13%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. H. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Q. 19: 15-34.

    Article  CAS  Google Scholar 

  • Balaguer, L., Barnes, J. D., Panicucci, A. & Borland, A. M. 1995. Production and utilization of assimilates in wheat (Triticum aestivumL. ) leaves exposed to elevated CO2 and/or O3. New Phytol. 129: 557-568.

    Article  CAS  Google Scholar 

  • Balaguer, L., Valladares, F., Ascaso, C., Barnes, J. D., de los Rios, A., Manrique, E. & Smith, E. C. 1996. Potential effects of rising tropospheric concentrations of CO2 and O3 on green-algal lichens. New Phytol. 132: 641-652.

    Article  CAS  Google Scholar 

  • Ball, J. T., Woodrow, I. E. & Berry, J. A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. pp. 221-224. In: J. Biggins (ed.), Progress in Photosynthesis Research. Martinus Nijhoff, The Netherlands.

    Chapter  Google Scholar 

  • Barnes, J. D. & Davison, A. W. 1988. The influence of ozone the winter hardiness of Norway spruce (Picea abies(L.) Karst.). New Phytol. 108: 159-166.

    Article  CAS  Google Scholar 

  • Barnes, J. D., Pfirrmann, T., Steiner, K., Lutz, C., Busch, U., Kuchenhoff, H. & Payer, H. D. 1995. Effects of elevated CO2, elevated O3 and potassium deficiency on Norway spruce (Picea abies(L.) Karst.): seasonal changes in photosynthesis and non-structural carbohydrate content. Plant Cell Environ. 18: 1345-1357.

    Article  CAS  Google Scholar 

  • Brooks, A. & Farquhar, G. D. 1985. Effect of temperature on the CO2/O2 specificity of ribulose-1,5 bisphosphate carboxylase/ oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach. Planta 165: 397-406.

    Article  CAS  Google Scholar 

  • Chameides, W. L., Kasibhatla, P. S., Yienger, J. & Levy, H. 1994. Growth of continental-scale metro-agro-plexes, regional ozone pollution and world food production. Science 264: 74-77.

    Article  CAS  Google Scholar 

  • Carlson, R. W. & Bazzaz, F. A. 1982. Photosybthetic and growth response to fumigation with SO2 at elevated CO2 for C3 and C4 plants. Oecologia 54: 50-54.

    Article  Google Scholar 

  • Darrall, N. M. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell Environ. 12:1-30.

    Article  CAS  Google Scholar 

  • Farquhar, G. D. & von Caemmerer, S. 1982. Modelling of photosynthetic response to environmental conditions. Pp. 549-587. In: O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler (eds), Encyclopedia of Plant Physiology. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Farrar, J. F. & Williams, M. L. 1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ. 14: 819-830.

    Article  CAS  Google Scholar 

  • Field, C. B., Jackson, R. B., & Mooony, H.A. 1995. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18: 1214-1225.

    Article  Google Scholar 

  • Floyd, R. A., West, M. S., Hogsett, W. E. & Tingey, D. T. 1989. Increased 8-hydroxyguanine content of chloroplast DNA from ozone-treated plants. Plant Physiol. 91: 644-647.

    Article  CAS  Google Scholar 

  • Forseth, I. N. & Norman, J. M. 1993. Modelling of solar irradiance, leaf energy budget and canopy photosynthesis. Pp. 207-219. In: D.O. Hall, J.M.O. Scurlock, H.R. Bolhar-Nordenkampf, R.C. Leegood & S.P. Long (eds), Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual. Chapman and Hall, London, U.K.

    Google Scholar 

  • Greer, D. H., Berry, J. A. & Björkman, O. 1986. Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. Planta 168: 253-260.

    CAS  PubMed  Google Scholar 

  • Hari, P., Kanninen, M., Kelllomäki, S., Luukkanen, O., Pelkonen, P., Salminen, R. & Smolander H., 1979. An automatic system for measurements of gas exchange and environmental factors in a forest stand, with special reference to measuring principles. Silva Fennica 13: 94-100.

    Article  Google Scholar 

  • Harley, P. C. & Baldocchi, D. D. 1995. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization. Plant Cell Environ. 18: 1146-1156.

    Article  Google Scholar 

  • Harley, P. C., Tenhunen, J. D. & Lange, O. L. 1986. Use of an analytical model to study limitations on net photosynthesis in Arbutus unedounder field conditions. Oecologia 70: 393-401.

    Article  CAS  Google Scholar 

  • Harley, P. C., Thomas, R. B., Reynolds, J. F. & Strain, B. R. 1992. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ. 15: 271-282.

    Article  CAS  Google Scholar 

  • Heagle, A. S., Miller, J. R., Sherill, D. E. & Rawlings, J. O. 1993. Effects of ozone and carbon dioxide mixtures on two clones of white clover. New Phytol. 123: 751-762.

    Article  CAS  Google Scholar 

  • Idso, S. B., Kimball, B. A., Anderson, M. G. & Mauney, J. R. 1987. Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agric. Ecosys. Environ. 20: 1-10.

    Article  Google Scholar 

  • Kellomäki, S. & Wang, K.-Y. 1996. Responses of photosynthesis in Scots pine to needle water potential after three years exposure to elevated temperature and CO2. Tree Physiol. 16: 765-772.

    Article  Google Scholar 

  • Kellomäki, S. & Wang, K.-Y. 1997a. Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine. Plant Cell Environ. 20: 995-1006.

    Article  Google Scholar 

  • Kellomäki, S. & Wang, K.-Y. 1997b. Effects of elevated O3 and CO2 on chlorophyll fluorescence and gas exchange in Scots pine during the third growth season. Environ. Pollution. 97: 17-27.

    Article  Google Scholar 

  • Kellomäki, S. & Wang, K.-Y. 1997c. Effects of long-term CO2 and temperature elevation on crown nitrogen distribution and photosynthetic performance of Scots pine. J. For. Ecol. Managem. 99: 309-326.

    Article  Google Scholar 

  • Kellomäki, S., Väisänen, H. & Strandman, H. 1993. FINNFOR: A model for calculating the response of boreal forest ecosystem to climate change. Research Notes, Univ. Joensuu 6: 22-23.

    Google Scholar 

  • Kimball, B. A., Rosenberg, N. J., Allen, L. H., Heichel, G. H., Stuber, C. W., Kissel, D. E. & Ernst, S. (eds) 1990. Impact of Carbon Dioxide, Trace Gases and Climate Change on Global Agriculture. Madison, USA: American Society of Agronomy.

    Google Scholar 

  • Kirschbaum, M. U. F. & Farquhar, G. D. 1984. Temperature dependence of whole-leaf photosynthesis in Eucalyptus paucifloraSieb. ex Spreng. Austr. J. Plant Physiol. 11: 519-538.

    Article  Google Scholar 

  • Korpilahti, E. 1988. Photosynthetic production of Scots pine in the natural enviroment. Acta For. Fenn., 202: 1-69.

    Google Scholar 

  • Krause, G. H. M., Prinz, B. & Jung, K. D. 1984. Untersuchungen zur Aufklärung immissionsbedingter Waldschäden in der Bundesrepublik Deutschland. Pp. 104-112. In: E.H. Adema & J. van Ham (eds), Zure Regen: Oorzaken, Effecten en Beleid (Acid rain: causes, effects and management). Den Bosch. Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Kull, O., Sober, A., Coleman, M. D., Dickson, R. E., Isebrands, J. G., Gagnon, Z. & Karnosky, D. F., 1996. Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO2. Can. J. For. Res. 26: 639-648.

    Article  CAS  Google Scholar 

  • Lange, O. L., Tenhunen, J. D. & Braun, M. 1982. Midday stomatal closure in mediterranean type sclerophyll under simulated habitat conditions in an environmental chamber. I. Comparison of the behaviour of various European Mediterranean species. Flora 172: 563-579.

    Article  Google Scholar 

  • Leuning, R., Kelliher, F. M., de Pury, D. G. G. & Schulze, E.-D. 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopy. Plant Cell Environ. 18: 1183-1200.

    Article  Google Scholar 

  • Leverenz, J.W. & Öquist, G. 1987. Quantum yields of photosynthesis at temperatures between -2 °C and 35 °C in a cold-tolerant C3 plant (Pinus sylvestris) during the course of one year. Plant Cell Environ. 10: 287-295.

    Article  Google Scholar 

  • Linder, S. & Lohammar, T. 1981. Amount and quality of information on CO2-exchange required for estimating annual carbon balance of coniferous trees. For. Suec. 160: 73-87.

    Google Scholar 

  • Lloyd, J. 1991. Modelling stomatal responses in Macadamia integrifolia. Austr. J. Plant Physiol. 18: 649-660.

    Article  Google Scholar 

  • Long, S. P. 1994. The potential effects of concurrent increases in temperature, CO2 and O3 on net photosynthesis, as mediated by Rubisco. Pp. 21-38. In: R. G. Alscher & A. R. Wellburn (eds), Plant Responses to the Gaseous Environment Molecular, Metabolic and Physiological Aspects. Chapman and Hall, London.

    Chapter  Google Scholar 

  • Martin, B, Mårtenson, O. & Öquist, G. 1978. Effect of frost hardening and dehardening on photosynthetic electron transport and fluorescence properties in isolated chloroplasts of Pinus silvestris. Physiol. Plant. 43: 297-305.

    Article  CAS  Google Scholar 

  • McCullough, E. C. & Porter, W. P. 1971. Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology 52: 1008-1015.

    Article  Google Scholar 

  • McMurtrie, R. E. & Wang, Y. P. 1993. Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures. Plant Cell Environ. 16: 1-13.

    Article  CAS  Google Scholar 

  • Mortensen, L. M. 1990. Effects of ozone on growth of Triticum aestivumL. at different light, air humidity and CO2 levels. Norwegian J. Agric. Sci. 4: 343-348.

    Google Scholar 

  • Mortensen, L. M. 1992. Effects of ozone concentration on growth of tomato at various light, air humidity and carbon dioxide levels. Scientia Horticulturae 49: 17-24.

    Article  CAS  Google Scholar 

  • Nobel, P. S. 1970. Introduction to biophysical plant physiology. W.H. Freeman and Company, San Francisco, pp 309-310.

    Google Scholar 

  • Pelkonen, P. & Harri, P. 1980. The dependence of the spring time recovery of CO2 uptake in Scots pine on temperature and internal factors. Flora 169: 389-404.

    Google Scholar 

  • Pell, E. J., Landry, L. G., Eckardt, N. A. & Glick, R. E. 1994. Effects of gaseous pollutants on ribulose biphosphate carboxylase/oxygenase: effects and implications. Pp. 239-254. In: R. G. Alscher & A. R. Wellburn (eds), Plant Responses to the Gaseous Environment: Molecular, Metabolic and Physiological Aspects. Chapman & Hall, London.

    Chapter  Google Scholar 

  • Polle, A. & Rennenberg, H. 1993. Significance of antioxidants in plant adaptation to environmental stress. Pp. 263-273. In: L. Fowden, T. Mansfield & J. Stoddart (eds), Plant Adaptation to Environmental Stress. Chapman & Hall, London.

    Google Scholar 

  • Roessler, P. G. & Monson, R. K. 1985. Midday depression in net photosynthesis and stomatal conductance in Yucca glauca. Oecologia 67: 380-387.

    Article  Google Scholar 

  • Ross, J. 1981. The Radiation Regimer and Architecture of Plant Stands. W. Junk, London.

    Book  Google Scholar 

  • Sanders, G. E., Colls, J. J. & Clark, A. G. 1992. Physiologgical changes in Phaseolus vulgaris in response to long-term ozone exposure. Ann. Bot. 69: 123-133.

    Article  CAS  Google Scholar 

  • Stitt, M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 14: 741-762.

    Article  CAS  Google Scholar 

  • Strand, M., Öquist, G. 1985. Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (Pinus sylvestris). II. Effects on chlorophyll fluorescence at room temperature and 77 K. Physiol. Plant. 65: 117-123.

    Article  CAS  Google Scholar 

  • Strand, M. & Öquist, G. 1988. Effects of forest hardening, dehardening and freezing stress on in vivo chlorophyll fluorescence of Scots pine seedings (Pinus sylvestris). Plant Cell Environ. 11: 231-238.

    Article  CAS  Google Scholar 

  • Tenhunen, J. D., Lange, O. L., Gebel, J., Beyschlag, W. & Weber, J. A. 1984. Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. Planta 162: 193-203.

    Article  CAS  Google Scholar 

  • Tjoelker, M. G., Volin, J. C., Oleksyn, J. & Reich, P. B. 1995. Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant Cell Environ. 18: 895-905.

    Article  CAS  Google Scholar 

  • Wang, K.-Y. 1996. Canopy CO2 exchange of Scots pine and its seasonal variation after four-year exposure to elevated CO2 and temperature. Agric. For. Meteorol. 82: 1-27.

    Article  Google Scholar 

  • Wang, K.-Y., Kellomäki, S. & Laitinen, K. 1996. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2. Agric. For. Meteorol. 82:195-217.

    Article  Google Scholar 

  • Weiss, A. & Norman, J. M. 1985. Partitioning solar radiation into direct and diffuse, visible and near-infrared components. Agric. For. Meteorol. 34: 205-213.

    Article  Google Scholar 

  • Whitehead, D., Jarvis, P. G. & Waring, R. H. 1984. Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestrisspacing experiment. Can. J. For. Res. 14: 692-700.

    Article  Google Scholar 

  • Wullschleger, S.-D. 1993. Biochemical limitations to carbon assimilation in C3 plants-a retrospective analysis of the A/Ci curves from 109 species. J. Exp. Bot. 44: 907-920.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellomäki, S., Wang, KY. Daily and seasonal CO2 exchange in Scots pine grown under elevated O3 and CO2: experiment and simulation. Plant Ecology 136, 229–248 (1998). https://doi.org/10.1023/A:1009708516072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009708516072

Navigation