Skip to main content
Log in

A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3Δ background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht-Gary A, Crumbliss AL. 1998Coordination chemistry of siderophores: Thermodynamics and kinetics of iron chelation and release. In: Sigel A, Sigel H, eds. Metal Ions in Biological Systems, Vol 35. Iron Transport and Storage in Microorganisms, Plants and Animals. New York: Marcel Dekker; 239–327.

    Google Scholar 

  • Askwith CC, de Silva D, Kaplan J. 1996 Molecular biology of iron acquisition in Saccharomyces cerevisiae. Molec Microbiol 20, 27–34.

    Google Scholar 

  • Berner I, Greiner M, Metzger J, Jung G, Winkelmann G. 1991 Identification of enterobactin and linear dihydroxybenzoylserine compounds by HPLC and ion spray mass spectrometry (LC/MS and MS/MS). BioMetals 4, 113–118.

    Google Scholar 

  • Berner I, and Winkelmann G. 1990 Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) in Erwinia herbicola (Enterobacter agglomerans). BioMetals 2, 197–202.

    Google Scholar 

  • Braun V, Hantke K. 1997 Receptor-mediated bacterial iron transport. In: Winkelmann G, Carrano CJ, eds. Transition Metals in Microbial Metabolism. Amsterdam: Harwood Academic Publisher; 67–145.

    Google Scholar 

  • Brickman TJ, McIntosh MA. 1992 Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267, 12350–12355.

    Google Scholar 

  • Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der Helm D, Deisenhofer J. 1999 Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nature Struct Biol 6, 56–63.

    Google Scholar 

  • Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG. 1990 Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10, 2294–2301.

    Google Scholar 

  • Drechsel H, and Winkelmann G. 1997 Iron chelation and siderophores, In: Winkelmann G, Carrano CJ, eds. Transition Metals in Microbial Metabolism. Amsterdam: Harwood Academic Publishers; 1–49.

    Google Scholar 

  • Duhme A, RC Hider, Khodr HH. 1997 Synthesis and iron-binding properties of protochelin, the tris(catecholamide) siderophore of Azotobacter vinelandii. Chem Ber /Recueil 130, 969–973.

    Google Scholar 

  • Emery T. 1976Fungal ornithine esterases: relationship to iron transport. Biochemistry 15, 2723–2728.

    Google Scholar 

  • Ernst JF, Bennet L, Rothfield LI. 1978 Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J Bacteriol 135, 928–934.

    Google Scholar 

  • Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. 1998 Siderophore-mediated iron transport: Crystal structure of FhA with bound lipopolysaccharide. Science 282, 2215–2220.

    Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszcczynski A, Fekete F, Krisnamurthu S, Jun L, Xu G. 1997 Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53, 133–162.

    Google Scholar 

  • Goffeau A, Park J, Paulsen IT, Jonniaux J-L, Dinh T, Mordant P, Saier MH. 1997 Multidrug-resistant transport proteins in yeast: complete inventory and phylogenetic characterization of yeast open reading frames within the major facilitator superfamily. Yeast 13, 43–54.

    Google Scholar 

  • Hantke K. 1990 Dihydroxybenzoylserine-a siderophore for E. coli. FEMS Microbiol Lett 67, 5–8.

    Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G. 1999 Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. BioMetals 12 (in press, please include).

  • Heymann P, Ernst JF, Winkelmann G. 2000 Identification and substrate specificity of a ferrichrome-type siderophore transporter (ARN1p) in Saccharomyces cerevisiae (submitted).

  • Howard DH. 1999 Acquisition, transport and storage of iron by pathogenic fungi. Clin Microbiol Rev 12, 394–404.

    Google Scholar 

  • Huschka H, Winkelmann G. 1989 Iron limitation and its effect on membrane proteins and siderophore transport in Neurospora crassa. BioMetals 2, 108–113.

    Google Scholar 

  • Huschka H, Müller G, Winkelmann G. 1983 The membrane potential is the driving force for siderophore iron transport in fungi. FEMS Microbiol Lett 20, 125–129.

    Google Scholar 

  • Huschka H, Naegeli HU, Leuenberger-Ryf H, Keller-Schierlein W, Winkelmann G. 1985. Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa. J Bacteriol 162, 715–721.

    Google Scholar 

  • Huschka H, Jalal MAF, van der Helm D, Winkelmann G. 1986 Molecular recognition of siderophores in fungi: Role of ironsurrounding N-acyl residues and the peptide backbone during membrane transport in Neurospora crassa. J Bacteriol 167, 1020–1024.

    Google Scholar 

  • Lesuisse E, Labbe P. 1994 Reductive iron assimilation in Saccharomyces cerevisiae. In: Winkelmann G, Winge DR, eds. Metal Ions in Fungi. New York: Marcel Dekker; 149–178.

    Google Scholar 

  • Lesuisse E, Simon-Casteras M, Labbe P. 1998 Siderophoremediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144, 3455–3462.

    Google Scholar 

  • Leong SA, Winkelmann G. 1998 Molecular biology of iron transport in fungi. In: Sigel A, Sigel H, eds. Metal Ions in Biological Systems, Vol. 35, New York: Marcel Dekker; 147–186.

    Google Scholar 

  • Mademidis A, Killmann H, Kraas W, Flechsler I, Jung G, Braun V. 1997 ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mol Microbiol 26, 1109–1123.

    Google Scholar 

  • Nelissen B, De Wachter R, Goffeau A. 1997 Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Lett 21, 113–134.

    Google Scholar 

  • Neilands J B, Konopka K, Schwyn B, Coy M, Francis RT, Paw BH, Bagg A. 1987 Comparative Biochemistry of microbial iron assimilation. In: Winkelmann G, van der Helm D, Neilands JB, eds. Iron Transport in Microbes, Plants and Animals, Weinheim: VCH-Wiley; 3–33.

    Google Scholar 

  • O'Brian IG, Gibson F. 1970 The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. Biochim Biophys Acta 215, 393–402

    Google Scholar 

  • Pao SS, Paulsen IT, Saier Jr MH. 1998 Major facilitator superfamily. Microbiol Molec Biol Rev 62, 1–34.

    Google Scholar 

  • Pollack JR, Neilands JB. 1970 Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun 5, 989–992.

    Google Scholar 

  • Telford JR, Leary JA, Tunstad LMG, Byers BR, Raymond KN. 1994 Amonabactin: Characterization of a series of siderophores from Aeromonas hydrophila. J Am Chem Soc 116, 4499–4500.

    Google Scholar 

  • Van der Helm D, Winkelmann G. 1994 Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge DR, eds. Metal Ions in Fungi. New York: Marcel Dekker; 39–98.

    Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P. 1994 New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.

    Google Scholar 

  • Wiebe C, Winkelmann G. 1975 Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. J Bacteriol 123, 837–842.

    Google Scholar 

  • Winkelmann G. 1979 Evidence for stereospecific uptake of iron chelates in fungi. FEBS Lett 97, 43–46.

    Google Scholar 

  • Winkelmann G. (ed.) 1991 Handbook of Microbial Iron ChelatesBoca Raton FL: CRC Press.

    Google Scholar 

  • Winkelmann G. 1993 Kinetics, energetics, and mechanisms of siderophore iron transport in fungi. In: Barton LL, Hemming BC, eds. Iron Chelation in Plants and Soil Organisms, San Diego: Academic Press; 219–239.

    Google Scholar 

  • Winkelmann G, Braun V. 1981 Stereoselective recognition of ferrichrome by fungi and bacteria. FEMS Microbiol Lett 11, 237–241.

    Google Scholar 

  • Winkelmann G, Huschka H 1984. A study on the mechanism of siderophore transport-a proton symport. J Plant Nutr 7, 479–487.

    Google Scholar 

  • Winkelmann G., and D.R. Winge. (eds.) 1994 Metal Ions in Fungi. New York: Marcel Dekker.

    Google Scholar 

  • Winkelmann G, Cansier A, Beck W, Jung G. 1994 HPLC separation of enterobactin and linear 2,3-dihydroxybenzoylserine derivatives: a study on mutants of Escherichia coli defective in regulation (fur), esterase (fes) and transport (fepA). BioMetals 7, 149–154.

    Google Scholar 

  • Winkelmann G, Drechsel H. 1997 Microbial siderophores. In: Kleinkauf H, von Döhren H, eds, Biotechnology, 2nd ed., Vol. 7, Weinheim VCH-Wiley; 199–264.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heymann, P., Ernst, J.F. & Winkelmann, G. A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals 13, 65–72 (2000). https://doi.org/10.1023/A:1009250017785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009250017785

Navigation