Skip to main content
Log in

Heterologous and homologous transgenic expression directed by a 2S seed storage promoter of Brassica napus

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Few plant genes have been analysed in both homologous and heterologous transgenic systems. In this study, deletion mutants of the storage protein promoter napA fused to the receptor gene uidA (GUS) were analysed for their ability to direct tissue-specific expres sion in transgenic tobacco as well as transgenic Brassica napus. In seeds, qualitatively similar results have previously been obtained, demonstrating that transcription factors in the heterologous tobacco system recognized the napA promoter cis elements, more or less in the same way as in B. napus (Ellerstrom et al., 1996; Stalberg et al., 1996). However, in anthers of the transgenic plants, clear differences were noted. The napA promoter constructs were inactive in transgenic B. napus anthers. In contrast, tobacco anthers displayed activities of similar magnitudes to those previously found in the seed for the respective promoter constructs. Interestingly, in seven constructs the activity in the anthers was retained dow nstream from an imperfect ABRE element, whereas no activity could be detected in the seed. Another clear difference was that a region from −211 to −152 silenced the expression in anthers whereas this region had no effect on the activity in the seed. Likewise, in tobacco the napA promoter showed a low activity in leaves. Histochemical staining of young tobacco leaves showed that this activity was considerably higher in stomata guard cells than in the mesophyll cells while the leaves of the B. napus plants had a diffuse and barely detectable staining in the mesophyll cells. The high level of napA transcription in tobacco anthers indicates that the set of transcription factors and corresponding cis-sequences that direct tissue-specific transcription in this organ are similar to those responsible for seed-specific expression. However, comparison of the levels of expression in anthers and seeds in individual plants revealed that there was no correlation between the activities in the two organs, which suggests that positional effects influence the transcription complexes differently in seeds and anthers. Further, this study shows that careful analysis of expression directed by promoter mutants in a heterologous transformation system might reveal important cis-elements, not discernible in the tighter homologous situation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäumlein, H., Nagy, I., Villarroel, R., Inzé, D. and Wobus, U. (1992) Cis-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J. 2, 233-9.

    Google Scholar 

  • Boutilier K.A., Gines, M.J., Demoor, J.M., Huang, B., Baszczynski, C.L., Iyer, V.N. and Miki, B.L. (1994) Expression of the BnNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol. Biol. 26, 1711-23.

    Google Scholar 

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72, 248-54.

    Google Scholar 

  • Chern, M.S., Bobb, A.J. and Bustos, M.M. (1996) The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. Plant Cell 8, 305-21.

    Google Scholar 

  • Da Silva Conceicao, A. and Krebbers, E. (1994) A cotyledon regulatory region is responsible for the different spatial expression patterns of Arabidopsis 2S albumin genes. Plant J. 5, 493-505.

    Google Scholar 

  • Diaz, I., Royo, J., O'Connor, A. and Carbonero, P. (1995) The promoter of the gene ltrl from barley confers a different tissue specificity in transgenic tobacco. Mol. Gen. Genet. 248, 592-8.

    Google Scholar 

  • Ellerström, E., Stålberg, K., Ezcurra, I. and Rask, L. (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo an endosperm specific expression. Plant Mol. Biol. 32, 1019-27.

    Google Scholar 

  • Ericson, M.L. (1988) Seed storage proteins, Studies on the structure, molecular genetics and intracellular localization of napin from Brassica napus. Thesis: Swedish University of Agricultural Sciences, Department of Cell Research, Uppsala.

    Google Scholar 

  • Fleming, A.J. and Hanke, D.E. (1993) The regulation of napin gene expression in secondary embryos of Brassica napus. Physiol. Plant. 87, 396-402.

    Google Scholar 

  • Fujiwara, T. and Beachy, R.N. (1994) Tissue-specific and temporal regulation of a beta-conglycinin gene: roles of the RY repeat and other cis-acting elements. Plant Mol. Biol. 24, 261-72.

    Google Scholar 

  • Gallusci, P., Salamini, F. and Thompson, R.D. (1994) Differences in cell type specific expression of the gene Opaque2 in maize and transgenic tobacco. Mol. Gen. Genet. 244, 391-400.

    Google Scholar 

  • Guiltinan, M.J., Marcotte, W.R. Jr. and Quatrano, R.S. (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-71.

    Google Scholar 

  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant. Mol. Biol. Rep. 5, 387-405.

    Google Scholar 

  • Koning, A., Jones, A., Fillatti, J.J., Comai, L. and Lassner, M.W. (1992) Arrest of embryo development in Brassica napus mediated by modified Pseudomonas aeruginosa exotoxin A. Plant Mol. Biol. 18, 247-58.

    Google Scholar 

  • Morton, R.L., Quiggin, D. and Higgins, T.J.V. (1995) Regulation of seed storage protein gene expression. In Kigel J. and Galili G. (Eds.), Seed Development and Germination. New York, USA: Marcel Dekker, Inc. pp. 103-36.

    Google Scholar 

  • Plegt, L. and Bino, R.L. (1989) β-glucuronidase activity during the development of the male gametophyte from transgenic and non-transgenic plants. Mol. Gen. Genet. 216, 321-7.

    Google Scholar 

  • Shen, Q., Zhang, P. and Ho, T.H.D. (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8, 1107-19.

    Google Scholar 

  • Sjödahl, S., Gustavsson, H.O., Rödin, J. and Rask, L. (1995) Deletion analysis of the Brassica napus cruciferin gene cru 1 promoter in transformed tobacco: promoter activity during early and late stages of embryogenesis is influenced by cis-acting elements in partially separate regions. Planta 197, 264-71.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1981) Biometry, 2nd edition, San Francisco, USA: W.H. Freeman.

    Google Scholar 

  • Stålberg, K., Ellerström, M., Josefsson, L.G. and Rask, L. (1993) Deletion analysis of a 2S seed storage protein promoter of Brassica napus in transgenic tobacco. Plant Mol. Biol. 23, 671-83.

    Google Scholar 

  • Stålberg, K., Ellerström, M., Ezcurra, I., Ablov, S. and Rask, L. (1996) Disruption of an overlapping E box/ABRE motif abolished high transcription of the napA storage protein promoter in transgenic Brassica napus seeds. Planta 199, 515-9.

    Google Scholar 

  • Szerszen, J.B., Szczyglowski, K. and Bandurski, R.S. (1994) Iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265, 1699-701.

    Google Scholar 

  • Taylor, C.B. (1997) Promoter fusion analysis: an insufficient measure of gene expression. Plant Cell 9, 273-8.

    Google Scholar 

  • Terada, R., Nakayama, T., Iwabuchi, M. and Shimamoto, K. (1995) A type I element composed of the hexamer (ACGTCA) and octamer (CGCGGATC) motifs plays a role(s) in meristematic expression of a wheat histone H3 gene in transgenic rice plants. Plant Mol. Biol. 27, 17-26.

    Google Scholar 

  • Quatrochio, F., Tolk, M.A., Coragio, I., Mol, J.M., Viotti, A. and Koes, R.E. (1990) The maize zein gene zE19 contains two distinct promoters which are independently activated in endosperm and anthers of transgenic Petunia plants. Plant Mol. Biol. 15, 81-94.

    Google Scholar 

  • van der Geest, A.H.M., Frisch, D.A., Kemp, J.D. and Hall, T.C. (1995) Cell ablation reveals that expression from the phaseolin promoter is confined to embryogenesis and microsporogenesis. Plant Physiol. 109, 1151-58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stalberg, K., Ellerstrom, M., Sjodahl, S. et al. Heterologous and homologous transgenic expression directed by a 2S seed storage promoter of Brassica napus. Transgenic Res 7, 165–172 (1998). https://doi.org/10.1023/A:1008884728643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008884728643

Navigation