Skip to main content
Log in

The Late Pleistocene - Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Three piston cores from Lake Victoria (East Africa) have been analysed for organic carbon (TOC) and nitrogen (TN) content, stable isotopes (δ13C and δ15N), and Hydrogen Index (HI). These data are combined with published biogenic silica and water content analyses to produce a detailed palaeolimnological history of the lake over the past ca. 17.5 ka. Late Pleistocene desiccation produced a lake-wide discontinuity marked by a vertisol. Sediments below the discontinuity are characterised by relatively low TOC and HI values, and high C/N, δ13C and δ15N, reflecting the combined influence of abundant terrestrial plant material and generally unfavourable conditions for organic matter preservation. A thin muddy interval with lower δ13C and higher HI and water content indicates that dry conditions were interrupted by a humid period of a few hundred years duration when the lake was at least 35 m deep. The climate changed to significantly more humid conditions around 15.2 ka when the dry lake floor was rapidly flooded. Abundant macrophytic plant debris and high TOC and δ13C values at the upper vertisol surface probably reflect a marginal swamp. δ13C values decrease abruptly and HI begins to increase around 15 ka BP, marking a shift to deeper-water conditions and algal-dominated lake production. C/N values are relatively low during this period, suggesting a generally adequate supply of nitrogen, but increasing δ15N values reflect intense utilisation of the lake's DIN reservoir, probably due to a dramatic rise in productivity as nutrients were released to the lake from the flooded land surface.

An abrupt drop in δ13C and δ15N values around 13.8-13.6 ka reflects a period of deep mixing. Productivity increased due to more efficient nutrient recycling, and δ13C values fell as 12C-rich CO2 released by bacterial decomposition of the organic material was brought into the epilimnion. A weak drop in HI values suggests greater oxygen supply to the hypolimnion at this time. Better mixing was probably due to increased wind intensity and may mark the onset of the Younger Dryas in the region.

After the period of deep mixing, the water column became more stable. TOC, C/N, δ13C and HI values were at a maximum during the period between 10 and 4 ka, when the lake probably had a stratified water column with anoxic bottom waters. A gradual decrease in values over the last 4000 yrs suggest a change to a more seasonal climate, with periodic mixing of the water column. Rising sediment accumulation rates and a trend to more uniform surface water conditions over the last 2000 yrs are probably a result of increased anthropogenic impact on the lake and its catchment.

Following a maximum at the time of the rapid lake-level rise during the terminal Pleistocene, δ15N has remained relatively low and displays a gradual but consistent trend to lower values from the end of the Pleistocene to the present. TN values have risen during the same period. The lack of correlation between δ13C and δ15N, and the absence of any evidence for isotopic reservoir effects despite the rise in TN, suggests that the atmosphere, rather than the lake's dissolved nitrogen pool has been the principal source of nitrogen throughout the Holocene. The importance of atmospheric N fixation to Lake Victoria's nitrogen cycle thus predates by a very considerable margin any possible anthropogenic eutrophication of the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, D. A., F. Gasse, F. A. Street & M. A. J. Williams, 1980. Late Quaternary history of the Nile. Nature, 288: 50–55.

    Google Scholar 

  • Altabet, M. A. & R. Francois, 1994. The use of nitrogen isotopic ratio for reconstruction of past changes in surface ocean nutrient utilization. In: Zahn R., T. F. Pedersen, M. A. Kaminski & L. Labeyrie (eds), Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change. Springer-Verlag, Berlin, 281–306.

    Google Scholar 

  • Arthur, M. A., T. F. Anderson, I. R. Kaplan, J. Veizer & L. S. Land, 1983. Stable Isotopes in Sedimentary Geology. SEPM Short Course, 10: 435 pp.

  • Beadle, L. C., 1981. The Inland Waters of Tropical Africa. London, Longman, 433 pp.

    Google Scholar 

  • Beuning, K. R. M., K. Kelts, E. Ito & T. C. Johnson, 1997. Paleohydrology of Lake Victoria, East Africa, inferred from 18O/16O ratios in sediment cellulose. Geology, 25: 1083–1086.

    Google Scholar 

  • Beuning, K. R. M., K. Kelts & J. C. Stager, 1998. Abrupt climatic changes associated with the arid Younger Dryas interval in Africa. In: Lehman J. T., (ed), Environmental Change and Response in East African Lakes. Kluwer Academic Publishers, Netherlands, 147–156.

    Google Scholar 

  • Beuning, K. R. M., M. R. Talbot & K. Kelts, 1997. A revised 30,000-year paleoclimatic record and paleohydrologic history of Lake Albert, East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136: 259–279.

    Google Scholar 

  • Bishop, W. W., 1969. Pleistocene Stratigraphy in Uganda. Geological Survey of Uganda Memoir, X: 128 pp.

  • Blodgett, R. H., 1988. Calcareous paleosols in the Triassic Dolores Formation, southwestern Colorado. In: Reinhardt J. & W. R. Sigleo, (eds), Paleosols and Weathering through Geologic Time, Boulder, CO, Geological Society of America Special Paper No. 216, 103–121.

  • Blokhuis, W. A., 1993. Vertisols in the central clay plain of the Sudan. Wageningen, 418 pp.

  • Blunier, T., J. Chappellaz, J. Schwander, A. Dällenbach, B. Stauffer, T. F. Stocker, D. Raynaud, J. Jouzel, H. B. Clausen, C. U. Hammer & S. J. Johnsen, 1998. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394: 739–743.

    Google Scholar 

  • Blunier, T., J. Schwander, B. Stauffer, T. Stocker, A. Dällenbach, A. Indermühle, J. Tschumi, J. Chappellaz, D. Raynaud & J-M. Barnola, 1997. Timing of the Antarctic Cold Reversal and the atmospheric CO2 increase with respect to the Younger Dryas event. Geophys. Res. Lett. 24: 2683–2686.

    Google Scholar 

  • Broecker, W. S., 1995. The Glacial World According to Wally. Lamont, Eldigio Press, 318 pp.

    Google Scholar 

  • Broecker, W. S., D. Peteet, I. Hajdas, J. Lin & E. Clark, 1998. Antiphasing between rainfall in Africa's rift valley and North America's Great Basin. Quat. Res. 50: 12–20.

    Google Scholar 

  • Bugenyi, F. W. B. & K. M. Magumba, 1996. The present physicochemical ecology of Lake Victoria, Uganda. In: Johnson T. C. & E. O. Odada, (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam, 141–154.

    Google Scholar 

  • Calder, J. A. & P. L. Parker, 1973. Geochemical implications of induced changes in 13C fractionation by blue-green algae. Geochim. Cosmochim. Acta 37: 133–140.

    Google Scholar 

  • Collister, J. W. & J. M. Hayes, 1991. A preliminary study of the carbon and nitrogen isotope biogeochemistry of lacustrine sedimentary rocks from the Green River Formation, Wyoming, Utah and Colorado. United States Geological Survey Bulletin, 1973-A-G: C1-C16.

  • Crul, R. C. M., 1995. Limnology and hydrology of Lake Victoria. Studies and Reports in Hydrology-Comprehensive and Comparative Study of Great Lakes. UNESCO/IHP-IV Project M-5.1, UNESCO, 79pp.

  • Degens, E. T., R. R. L. Guillard, W. M. Sackett & J. A. Hellebust, 1968. Metabolic fractionation of carbon isotopes in marine plankton, I, Temperature and respiration experiments. Deep Sea Res. 15: 1–9.

    Google Scholar 

  • Delwiche, C. C. & P. L. Steyn, 1970. Nitrogen isotope fractionation in soils and microbial reactions. Env. Sci. Technol. 4: 929–935.

    Google Scholar 

  • Duchaufour, P., 1982. Pedology. Allen and Unwin, London, 448 pp.

    Google Scholar 

  • François, R., C. H. Pilskaln & M. A. Altabet, 1996. Seasonal variation in the nitrogen isotopic composition of sediment trap materials collected in Lake Malawi. In: Johnson T. C. & E. O. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam, 241–250.

    Google Scholar 

  • Gaudet, J. J., 1976. Nutrient relationships in the detritus of a tropical swamp. Archiv für Hydrobiol. 78: 213–239.

    Google Scholar 

  • Goericke, R., J. P. Montoya & B. Fry, 1994. Physiology of isotopic fractionation in algae and cyanobacteria. In: Lajtha K. & R. H. Michener (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell, Oxford, 187–221.

    Google Scholar 

  • Goldschmidt, T., 1996. Darwin's Dreampond, Drama in Lake Victoria. MIT Press, Cambridge, 274 pp.

    Google Scholar 

  • Greenwood, P. H., 1994. Lake Victoria. Arch. Hydrobiol. Beih. Ergebn. Limnol. 44: 19–26.

    Google Scholar 

  • Hamilton, A. C., 1982. Environmental History of East Africa. A Study of the Quaternary. Academic Press, London, 1–328.

    Google Scholar 

  • Healey, F. P., & L. L. Hendzel, 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fisheries Aquatic Sci. 37: 442–453.

    Google Scholar 

  • Hecky, R. E., 1993. The eutrophication of Lake Victoria. Verh. Internat. Verein. Limnol. 25: 39–48.

    Google Scholar 

  • Hecky, R. E., H. A. Bootsma, R. M. Mugidde & F. W. B. Bugenyi, 1996. Phosphorus pumps, nitrogen sinks, and silicon drains: plumbing nutrients in the African Great Lakes. In: Johnson T. C. & E. O. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam, 205–224.

    Google Scholar 

  • Hecky, R. E., F. W. B. Bugenyi, P. Ochumba, J. F. Talling, R. Mugidde, M. Gophen & L. Kaufman, 1994. Deoxygenation of the deep water of Lake Victoria, East Africa. Limnol. Oceanogr. 39: 1476–1481.

    Google Scholar 

  • Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.

    Google Scholar 

  • Hecky, R. E. & H. J. Kling, 1987. Phytoplankton ecology of the great lakes in the rift valleys of central Africa. Ergebnisse der Limnologie 25: 197–228.

    Google Scholar 

  • Hinga, K. R., M. A. Arthur, M. E. Q. Pilson & D. Whitaker, 1994. Carbon isotope fractionation by marine phytoplankton in culture: the effects of CO2 concentration, pH, temperature, and species. Global Biogeochem. Cycles 8: 91–102.

    Google Scholar 

  • Hollander, D. J. & J. A. McKenzie, 1991. CO2 control on carbon isotope fractionation during aqueous photosynthesis: a paleopCO 2 barometer. Geology 19: 929–932.

    Google Scholar 

  • Holtzman, J. & J. T. Lehman, 1998. Role of apatite weathering in the eutrophication of Lake Victoria. In: Lehman, J. T. (ed), Environmental Change and Response in East African Lakes. Kluwer, Dordrecht, 89–98.

    Google Scholar 

  • Johnson, T. C., 1980. Sediment redistribution by waves in lakes, reservoirs and embayments. Symposium on Surface Water Impoundments. ASCE, Minneapolis, 1307–1317.

    Google Scholar 

  • Johnson, T. C., Y. Chan, K. R. M. Beuning, K. Kelts, G. Ngobi & D. Verschuren, 1998. Biogenic silica profiles in Holocene cores from Lake Victoria: implications for lake level history and initiation of the Victoria Nile. In: Lehman, J. T. (ed), Environmental Change and Response in East African Lakes. Kluwer, Dordrecht, 75–88.

    Google Scholar 

  • Johnson, T. C., C. A. Scholz, M. R. Talbot, K. Kelts, R. D. Ricketts, G. Ngobi, K. Beuning, I. Ssemmanda & J. W. McGill, 1996. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273: 1091–1093.

    PubMed  Google Scholar 

  • Jouzel, J., R. Vaikmae, J. R. Petit, M. Martin, Y. Duclos, M. Stievenard, C. Lorius, M. Toots, M. A. Melieres, L. H. Burckle, N. I. Barkov & V. M. Kotlyakov, 1995. The 2-step shape and timing of the last deglaciation in Antarctica. Clim. Dyn. 11: 151–161.

    Google Scholar 

  • Kaufman, L., 1992. Catastrophic change in species-rich freshwater ecosystems: the lessons of Lake Victoria. BioScience 42: 846–858.

    Google Scholar 

  • Kendall, R. L., 1969. An Ecological History of the Lake Victoria Basin. Ecol. Monogr. 39: 121–176.

    Google Scholar 

  • Krishnamurthy, R. V. & S. Epstein, 1990. Glacial-interglacial excursion in the concentration of atmospheric CO2: effect in the 13C/12C ratio in wood cellulose. Tellus 42B: 423–434.

    Google Scholar 

  • Leavitt, S. W. & S. R. Danzer, 1991. Chronology from plant matter. Nature 352: 671–671.

    PubMed  Google Scholar 

  • Lehman, J. T., Ed., 1998. Environmental Change and Response in East African Lakes. Kluwer, Dordrecht, 233 pp.

    Google Scholar 

  • Lehman, J. T. & D. K. Branstrator, 1993. Effects of nutrients and grazing on phytoplankton of Lake Victoria. Verh. Internat. Verein. Limnol. 25: 850–855.

    Google Scholar 

  • Livingstone, D. A., 1975. Late Quaternary climatic change in Africa. Ann. Rev Ecol. Systematics 6: 249–280.

    Google Scholar 

  • Lorius, C., J. Jouzel, C. Ritz, L. Merlivat, N. I. Barkov, Y. S. Korotkevitch & V. M. Kotlyako, 1985. A 150,000-year climatic record from Antarctic ice. Nature 316: 591–596.

    Google Scholar 

  • Lézine, A-M. & M. Denèfle, 1997. Enhanced anticyclonic circulation in the eastern North Atlantic during cold intervals of the last deglaciation inferred from deep-sea pollen records. Geology 25: 119–122.

    Google Scholar 

  • Lézine, A-M., J-P. Tastet & M. Leroux, 1994. Evidence of atmospheric paleocirculation over the Gulf of Guinea since the Last Glacial Maximum. Quat. Res. 41: 390–395.

    Google Scholar 

  • Lærdal, T., 1997. A Reconstruction of the Sedimentology and Paleolimnology of Lake Victoria during the last 15 Thousand Years, using Stable Isotopes (Carbon and Nitrogen) and Rock-Eval Pyrolysis. unpub. Cand. sci. thesis, Geological Institute, University of Bergen: 99pp.

  • McKenzie, J. A., 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm, W. (ed), Chemical Processes in Lakes, New York, Wiley, 99–118.

    Google Scholar 

  • Meyers, P. A., 1994. Presevation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. (Isotope Geoscience Section) 114: 289–302.

    Google Scholar 

  • Montoya, J. P., 1994. Nitrogen isotope fractionation in the modern ocean: implications for the sedimentary record. In: Zahn, R. T., F. Pedersen, M. A. Kaminski & L. Labeyrie (eds), Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change. Springer-Verlag, Berlin, 259–279.

    Google Scholar 

  • N'Gobi, G. N., K. Kelts, T. C. Johnson & P. A. Solheid, 1998. Environmental magnetism of the Late Pleistocene-Holocene sequences from Lake Victoria, East Africa. In: Lehman, J. T., (ed), Environmental Change and Response in East African Lakes. Kluwer, Dordrecht, 59–74.

    Google Scholar 

  • Ochumba, P. B. O. & D. I. Kibaara, 1989. Observations on bluegreen algal blooms in the open waters of Lake Victoria, Kenya. Afr. J. Ecol. 27: 23–34.

    Google Scholar 

  • Owen, R. B. & R. Crossley, 1992. Spatial and temporal distribution of diatoms in sediments of Lake Malawi, central Africa, and ecological implications. J. Paleolim. 7: 55–71.

    Google Scholar 

  • Pardue, J. W., R. S. Scalan, C. Van Baalen & P. L. Parker, 1976. Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim. Cosmochim. Acta 40: 309–312.

    Google Scholar 

  • Piper, B. S., D. T. Plinston & J. V. Sutcliffe, 1986. The water balance of Lake Victoria. Hydrol. Sci. J. 31: 25–37.

    Google Scholar 

  • Raynaud, D., J. Jouzel, J-M. Barnola, J. Chappellaz, R. J. Delmas & C. Lorius, 1993. The ice record of greenhouse gases. Science 259: 926–934.

    Google Scholar 

  • Roberts, N., M. Taieb, P. Barker, B. Damnati, M. Icole & D. Williamson, 1993. Timing of the Younger Dryas event in East Africa from lake-level changes. Nature 366: 146–148.

    Google Scholar 

  • Scholz, C. A., T. C. Johnson, P. Cattaneo, H. Malinga & S. Shana, 1998. Initial results of 1995 IDEAL seismic reflection survey of Lake Victoria, Uganda and Tanzania. In: Lehman, J. T., (ed), Environmental Change and Response in East African Lakes. Kluwer, Dordrecht, 47–58.

    Google Scholar 

  • Scholz, C. A., B. R. Rosendahl, J. W. Versfelt & N. Rach, 1990. Results of high-resolution echo-sounding of Lake Victoria. J. Afr. Earth Sci. 11: 25–32.

    Google Scholar 

  • Schulz, H., U. Von Rad & H. Erlenkeuser, 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393: 54–57.

    Google Scholar 

  • Sirocko, F., 1997. The evolution of the monsoon climate over the Arabian Sea during the last 24,000 yrs. Palaeoecol. Afr. 24: 53–70.

    Google Scholar 

  • Sirocko, F., D. Garbe-Schönberg, A. McIntyre & B. Molfino, 1996. Teleconnections between the subtropical monsoons and highlatitude climates during the last deglaciation. Science 272: 526–529.

    Google Scholar 

  • Stager, J. C., 1984. The diatom record of Lake Victoria, East Africa: the last 17,000 years. Seventh International Diatom Symposium, In: Mann, D. G., (ed), Philadelphia, 455–476.

  • Stager, J. C., B. Cumming & L. Meeker, 1997. A high-resolution 11,400-yr. diatom record from Lake Victoria, East Africa. Quat. Res. 47: 81–89.

    Google Scholar 

  • Stager, J.C. & T. C. Johnson, in press. A 12,400 14C-year offshore diatom record from east-central Lake Victoria, East Africa. J. Paleolim.

  • Stager, J. C. & P. A. Mayewski, 1997. Abrupt early to mid-Holocene climatic transition registered at the Equator and Poles. Science 276: 1834–1836.

    Google Scholar 

  • Stager, J. C., P. N. Reinthal & D. A. Livingstone, 1986. A 25,000-year history for Lake Victoria, East Africa, and some comments on its significance for the evolution of cichlid fishes. Freshwater Biol. 16: 15–19.

    Google Scholar 

  • Street-Perrott, F. A., Y. Huang, R. A. Perrott & G. Eglington, 1998. Carbon isotopes in lake sediments and peats of last glacial age: implications for the global carbon cycle. In: Griffiths, H., (ed), Stable Isotopes. BIOS Scientific Publishers, Oxford, 381–396.

    Google Scholar 

  • Street-Perrott, F. A., Y. Huang, R. A. Perrott, G. Eglington, P. Barker, L. Ben Khelifa, D. D. Harkness & D. O. Olago, 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278: 1422–1426.

    PubMed  Google Scholar 

  • Street-Perrott, F. A. & R. A. Perrott, 1990. Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation. Nature 343: 607–612.

    Google Scholar 

  • Stuiver, M. & P. J. Reimer, 1993. Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35: 215–230.

    Google Scholar 

  • Talbot, M. R. & T. Johannessen, 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planetary Sci. Lett. 110: 23–37.

    Google Scholar 

  • Talbot, M. R. & D. A. Livingstone, 1989. Hydrogen Index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70: 121–137.

    Google Scholar 

  • Talling, J. F., 1966. The annual cycle of stratification and phytoplankton growth in Lake Victoria (East Africa). Int. Rev. Ges. Hydrobiol. 51: 545–621.

    Google Scholar 

  • Talling, J. F., 1987. The phytoplankton of Lake Victoria (East Africa). In: Munawar, M., (ed), Phycology of Large Lakes of the World. Vienna, Arch. Hydrobiol. Beih. Ergebn. Limnol., 25: 229–256.

  • Tyson, R. V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman & Hall, London, 615 pp.

    Google Scholar 

  • Verschuren, D., D. N. Edgington, H. J. Kling & T. C. Johnson, 1998. Silica depletion in Lake Victoria: sedimentary signals at offshore stations. J. Great Lakes Res. 24: 118–130.

    Google Scholar 

  • Vincens, A., F. Chalié, R. Bonnefille, J. Guiot & J. J. Tiercelin, 1993. Pollen-derived rainfall and temperature estimates from Lake Tanganyika and their implication for Late Pleistocene water levels. Quat. Res. 40: 343–350.

    Google Scholar 

  • Viner, A. B., 1975. The supply of minerals to tropical rivers and lakes (Uganda). In: Hasler, A. D., (ed), Coupling of Land and Water Systems. Springer, Berlin, 227–261.

    Google Scholar 

  • Wada, E. & A. Hattori, 1978. Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiol. J. 1: 85–101.

    Google Scholar 

  • Wada, E. & A. Hattori, 1991. Nitrogen in the Sea: Forms, Abundances, and Rate Processes. Boca Raton, CRC Press, 200 pp.

    Google Scholar 

  • Williams, M.A.J., D. Adamson, B. Cock & R. McEvedy, in press. Late Quaternary environments in the White Nile region, Sudan. Global Planet. Change.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, M.R., Lærdal, T. The Late Pleistocene - Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. Journal of Paleolimnology 23, 141–164 (2000). https://doi.org/10.1023/A:1008029400463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008029400463

Navigation