Skip to main content
Log in

Millimetre-wave fibre–wireless transmission systems with reduced effects of fibre chromatic dispersion

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper describes two techniques for the implementation of millimetre-wave (mm-wave) wireless communication systems incorporating optical fibre distribution networks. Fibre chromatic dispersion can exhibit severe effects on the transportation of mm-wave frequencies over fibre, resulting in greatly reduced post-detection rf powers. Each mm-wave fibre–wireless system demonstrated here incorporates a method for the generation and modulation of an optical mm-wave carrier, which enables the effect of fibre dispersion to be significantly reduced. One set-up is a direct-detection scheme where optical single-sideband (SSB) with carrier modulation is used to overcome fibre dispersion effects. The other system employs a self-heterodyne arrangement in which a dual-frequency optical source generates a low phase-noise mm-wave beat signal. Data transmission is achieved by externally modulating the dual-mode signal and reduced effects of fibre dispersion are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ogawa, D. Polifko and S. Banba, IEEE Trans. Micro. Thy. Tech. 40 (1992) 2285.

    Google Scholar 

  2. D. Gray, in Proc. of Wireless Broadband Conference (Washington DC, 1996).

  3. D. Wake, I. C. Smith, N. G. Walker, I. D. Hamming and R. D. Carver, Electron. Lett. 28 (1992) 2024.

    Google Scholar 

  4. J. J. O'Reilly, P. M. Lane, R. Heidemann and R. Hofstetter, Electron. Lett. 28 (1992) 2309.

    Google Scholar 

  5. R. Nagarajan, S. Levy and J. E. Bowers, J. Lightwave Technol. 12 (1994) 127.

    Google Scholar 

  6. J. B. Georges, M. H. Kiang, K. Heppel, M. Sayed and K. Y. Lau, IEEE Trans. Micro. Thy. Tech. 43 (1995) 2229.

    Google Scholar 

  7. D. Novak, Z. Ahmed, R. B. Waterhouse and R. S. Tucker, IEEE Trans. Micro. Thy. Tech. 43 (1995) 2257.

    Google Scholar 

  8. D. Wake, C. R. Lima and P. A. Davies, IEEE Trans. Micro. Thy. Tech. 43 (1995) 2270.

    Google Scholar 

  9. D. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu and Y. Ogawa, Electron. Lett. 31 (1995) 733.

    Google Scholar 

  10. Z. Ahmed, H. F. Liu, D. Novak, M. D. Pelusi, Y. Ogawa and D. Y. Kim, Electron. Lett. 31 (1995) 1254.

    Google Scholar 

  11. L. Noel, D. Marcenac and D. Wake, Electron. Lett. 32 (1996) 1997.

    Google Scholar 

  12. D. Mathoorasing, J. F. Cadiou, C. Kazmierski, E. Penard, P. Legaud and J. Guena, Electron. Lett. 31 (1995) 1990.

    Google Scholar 

  13. J. Park and K. Y. Lau, Electron. Lett. 32 (1996) 474.

    Google Scholar 

  14. R. P. Braun, G. Grosskopf, D. Rohde and F. Schmidt, Electron. Lett. 32 (1996) 626.

    Google Scholar 

  15. J. F. Cadiou, F. Devaux, J. F. Veillard, B. L. Marty, J. Guena, E. Penard and P. Legaud, Electron. Lett. 31 (1996) 1273.

    Google Scholar 

  16. Z. Ahmed, D. Novak, R. B. Waterhouse and H. F. Liu, Electron. Lett. 32 (1996) 1790.

    Google Scholar 

  17. R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt and G. Villino, Electron. Lett. 33 (1997) 1395.

    Google Scholar 

  18. L. Noel, D. Wake, D. G. Moodie, D. L. Marcenac and D. Nesset, IEEE Trans. Micro. Thy. Tech. 45 (1997) 1416.

    Google Scholar 

  19. C. H. von Helmolt, U. Kruger, K. Kruger and G. Grosskopf, IEEE Trans. Micro. Thy. Tech. 45 (1997) 1424.

    Google Scholar 

  20. Z. Ahmed, D. Novak, R. B. Waterhouse and H. F. Liu, IEEE Trans. Micro. Thy. Tech. 45 (1997) 1431.

    Google Scholar 

  21. A. Nirmalathas, H. F. Liu, C. Lim, D. Novak and G. H. Smith, in Proc. of Asia-Pacific Commun. Conf. (Sydney, Australia, 1997).

  22. H. Schmuck, Electron. Lett. 31 (1995) 1848.

    Google Scholar 

  23. R. Hofstetter, H. Schmuck and R. Heidemann, IEEE Trans. Micro. Thy. Tech. 43 (1995) 2263.

    Google Scholar 

  24. U. Gliese, S. Norskov and T. N. Nielsen, IEEE Trans. Micro. Thy. Tech. 44 (1996) 1716.

    Google Scholar 

  25. G. H. Smith, D. Novak and Z. Ahmed, Electron. Lett. 33 (1997) 74.

    Google Scholar 

  26. G. H. Smith, D. Novak and Z. Ahmed, IEEE Trans. Micro. Thy. Tech. 45 (1997) 1410.

    Google Scholar 

  27. R. A. Griffin, P. M. Lane and J. J. O'Reilly, Electron. Lett. 32 (1996) 2258.

    Google Scholar 

  28. J. Conradi, B. Davies, M. Sieben, D. Dodds and S. Walklin, in Proc. of Optical Fibre Commun. Conf. (Dallas, TX, 1997).

  29. J. Park, W. Sorin and K. Y. Lau, Electron. Lett. 33 (1997) 512.

    Google Scholar 

  30. J. Marti, J. M. Fuster and R. I. Laming, Electron. Lett. 33 (1997) 1170.

    Google Scholar 

  31. A. J. Lowery, IEEE Spectrum (1997) 26.

  32. Z. Kachwalla and J. W. Archer, in Proc. of Asia-Pacific Microwave Conf. (New Delhi, 1996), pp. 807–810.

  33. G. J. Simonis and K. G. Purchase, IEEE Trans. Micro. Thy. Tech. 38 (1990) 667.

    Google Scholar 

  34. L. Goldberg, R. D. Esman and K. J. Williams, IEE Proc. J 139 (1992) 288.

    Google Scholar 

  35. J. J. O'Reilly and P. Lane, J. Lightwave Technol. 12 (1994) 369.

    Google Scholar 

  36. S. Arahira, Y. Matsui, T. Kunii, S. Oshiba and Y. Ogawa, IEEE Photon. Technol. Lett. 5 (1993) 1362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, D., Smith, G.H., Lowery, A.J. et al. Millimetre-wave fibre–wireless transmission systems with reduced effects of fibre chromatic dispersion. Optical and Quantum Electronics 30, 1021–1031 (1998). https://doi.org/10.1023/A:1006998827549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006998827549

Keywords

Navigation