Skip to main content
Log in

Development of glycosylated human interleukin-1α, neoglyco IL-1α, coupled with D-galactose monosaccharide: biological activities in vivo

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In our previous study, a galactose monosaccharide with C9 spacer was chemically coupled to recombinant human interleukin 1α (rhIL-1α) in order to study the effect of glycosylation on its activities, and to develop IL-1 with less deleterious effects. The glycosylated IL-1α exhibited reduced activities in vitro by 10 to 10 000-fold depending upon different aspects of activities addressed. The affinity to type I and II IL-1 receptors were also reduced. In this study we examined a variety of IL-1 activities in vivo, including upregulation of serum levels of IL-6, α1-acid glycoprotein, NOx, corticosterone, downregulation of serum level of glucose, and recovery of peripheral white blood cells (WBCs) from myelosuppression in 5-fluorouracil-treated mice. In contrast to the biological activities in vitro, these activities in vivo were uniformly reduced by only about 10 to 20-fold compared to untreated IL-1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashwell G, Harford J (1982) Annu Rev Biochem 51: 531–54.

    Google Scholar 

  2. Tsuda E, Kawanishi G, Ueda M, Masuda S, Sasaki R (1990) Eur J Biochem 188: 405–11.

    Google Scholar 

  3. Goverman JM, Parsons TF, Pierce JG (1982) J Biol Chem 257: 15059–64.

    Google Scholar 

  4. Fischer T, Thoma B, Scheurich P, Pfizenmaier K (1990) J Biol Chem 265: 1710–17.

    Google Scholar 

  5. Mancilla J, Ikejima T, Dinarello CA (1992) Lymphokine Cytokine Res 11: 197–205.

    Google Scholar 

  6. Hashida M, Nishikawa M, Takakura Y (1995) J Control Release 36: 99–107.

    Google Scholar 

  7. Goebel WF, Avery OT (1929) J Exp Med 50: 521–31.

    Google Scholar 

  8. Krantz MJ, Lee YC (1976) Anal Biochem 71: 318–21.

    Google Scholar 

  9. Hoffman J, Larm O, Scholander E (1983) Carbohydr Res 117: 328–31.

    Google Scholar 

  10. Fujita T, Nishikawa M, Tamaki C, Takakura Y, Hashida M, Sezaki H (1992) J Pharmacol Exp Ther 263: 971–8.

    Google Scholar 

  11. Fujita T, Furitsu H, Nishikawa M, Takakura Y, Sezaki H, Hashida M (1992) Biochem Biophys Res Commun 189: 191–6.

    Google Scholar 

  12. Dinarello CA (1996) Blood: 87 2095–147.

    Google Scholar 

  13. Takei Y, Wada K, Chiba T, Hayashi H, Ishihara H, Onozaki K (1994) Lymphokine Cytokine Res 13: 265–70.

    Google Scholar 

  14. Takei Y, Chiba T, Wada K, Hayashi H, Yamada M, Kuwashima J, Onozaki K (1995) J Interferon Cytokine Res 15: 713–19.

    Google Scholar 

  15. Takei Y, Yang D, Chiba T, Nabeshima S, Naruoka M, Wada K, Onozaki K (1996) J Interferon Cytokine Res 16: 333–36.

    Google Scholar 

  16. Chiba T, Nabeshima S, Takei Y, OnozakiK (1997) Glycoconjugate J: in press.

  17. Nabeshima S, Chiba T, Takei Y, Watanabe S, Okuyama H, Onozaki K (1997) Glycoconjugate J: in press.

  18. Drickamer K, Mamon JF, Binns G, Leuhg JO (1984) J Biol Chem 259: 770–8.

    Google Scholar 

  19. Spiess M, Lodish HF (1985) Proc Natl Acad Sci USA 82: 6465–9.

    Google Scholar 

  20. Oda S, Sato M, Toyoshima S, Osawa T (1989) J Biochem (Tokyo) 105: 1040–3.

    Google Scholar 

  21. Sato M, Kawakami K, Osawa T, Toyoshima S (1992) J Biochem (Tokyo) 111: 331–6.

    Google Scholar 

  22. Matsuda T, Hirano T, Kishimoto T (1988) Eur J Immunol 18: 951–6.

    Google Scholar 

  23. Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) Anl Biochem 214: 11–16.

    Google Scholar 

  24. Besedovsky H, Rey A, Sorkin E, Dinarello CA (1986) Science 233: 652–4.

    Google Scholar 

  25. Baumann H, Morella KK, Wong GHW (1993) J Immunol 151: 4248–57.

    Google Scholar 

  26. Rey AD, Besedovsky H (1989) Proc Natl Acad Sci USA 86: 5943–7.

    Google Scholar 

  27. Endo Y, Nakamura M (1992) Br J Pharmacol 105: 13–19.

    Google Scholar 

  28. Nathan C (1992) FASEB J 6: 3051–64.

    Google Scholar 

  29. Beasley D, Schwartz JH, Brenner BM (1991) J Clin Invest 87: 602–8.

    Google Scholar 

  30. Tominaga T, Fukata J, Naito Y, Usui T, Murakami N, Fukushima M, Nakai Y, Hirai Y, Imura H (1991) Endocrinology 128: 526–31.

    Google Scholar 

  31. Moore MAS, Marren DJ (1987) Proc Natl Acad Sci USA 84: 7134–8.

    Google Scholar 

  32. Rennick D, Yaiang G, Gemmell L, Lee F (1987) Blood 69: 682–91.

    Google Scholar 

  33. Kitamura T, Takaku F, Miyajima A (1991) Inter Immunol 3: 571–7.

    Google Scholar 

  34. Sims JE, Acres RB, Grubin CE, McMahan CJ, Wignall JM, March CJ, Dower SK (1989) Proc Natl Acad Sci USA 86: 8946–50.

    Google Scholar 

  35. McMahan CJ, Slack JL, Masley B, Cosman D, Lupton SD, Brunton LL, Grubin CE, Wignall JM, Jenkins NA, Brannan CI, Copeland NG, Huebner K, Croce CM, Cannizzarro LA, Benjamin D, Dower SK, Sproggs MK, Sims JE (1991) EMBO J 10: 2821–32.

    Google Scholar 

  36. Re F, Muzio M, Rossi MD, Polentarutti N, Giri JG, Mantovani A, Colotta F (1994) J Exp Med 179: 739–43.

    Google Scholar 

  37. Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G (1995) J Biol Chem 270: 13757–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabeshima, S., Chiba, T., Takei, Y. et al. Development of glycosylated human interleukin-1α, neoglyco IL-1α, coupled with D-galactose monosaccharide: biological activities in vivo. Glycoconj J 15, 491–498 (1998). https://doi.org/10.1023/A:1006987020372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006987020372

Navigation