Skip to main content
Log in

Transcriptional regulation of the S. cerevisiae ENA1 gene by casein kinase II

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The regulatory subunit of S. cerevisiae casein kinase II (CKII) is encoded of two genes, CKB1 and CKB2. Strains harboring deletions of either or both genes exhibit specific sensitivity to high concentrations of Na+ or Li+. Na+ tolerance in S. cerevisiae is mediated primarily by transcriptional induction of ENA1, which encodes the plasma membrane sodium pump, and by conversion of the potassium uptake system to a higher affinity form that discriminates more efficiently against Na+. To determine whether reduced ENA1 expression plays a role in the salt sensitivity of ckb mutants, we integrated an ENA1-lacZ reporter gene into isogenic wild-type, ckb1, ckb2, and ckb1 ckb2 strains and monitored β-galactosidase activity at different salt concentrations. In all three mutants transcription from the ENA1 promoter remained salt-inducible, but both basal and salt-induced expression was depressed approximately 3- to 4-fold. The degree of reduction in ENA1 expression was comparable to that observed in an isogenic strain carrying a null mutation in protein phosphatase 2B (calcineurin), which is also required for salt tolerance. These results suggest that reduced expression of ENA1 contributes to the salt sensitivity of ckb strains. Consistent with this conclusion, overexpression of ENA1 from a heterologous promoter (GAL1) completely suppressed the salt sensitivity of ckb mutants. Induction of ENA1 expression by alkaline pH is also depressed in ckb mutants, but unlike calcineurin mutants, ckb strains are not growth inhibited by alkaline pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allende JE, Allende CC: Protein kinase CK2: An enzyme with multiple substrates and a puzzling regulation. FASEB J 9: 313–322, 1995

    PubMed  Google Scholar 

  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, New York NY, 1987

    Google Scholar 

  3. Banuelos MA, Quintero FJ, Rodriguez-Navarro A: Functional expression of the ENA1(PMR2)-ATPase of Saccharomyces cerevisiae in Schizosaccharomyces pombe. Biochim Biophys Acta 1229: 233–238, 1995

    PubMed  Google Scholar 

  4. Bidwai AP, Reed JC, Glover CVC: Cloning and disruption of CKB1, the gene encoding the 38-kDa β subunit of Saccharomyces cerevisiae casein kinase II (CKII): Deletion of CKII regulatory subunits elicits a salt-sensitive phenotype. J Biol Chem 270: 10395–10404, 1995

    PubMed  Google Scholar 

  5. Cunningham KW, Fink GR: Calcineurin inhibits VCX1-dependent H+/ Ca2+ exchange and induces Ca2+-ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16: 2226–2237, 1996

    PubMed  Google Scholar 

  6. Cyert MS, Thomer J: Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatase is required for adaptation to pheromone. Mol Cell Biol 12: 3460–3469, 1992

    PubMed  Google Scholar 

  7. Di Como CJ, Bose R, Arndt KT: Overexpression of SIS2, which contains an extremely acidic region, increases expression of SW14, CLN1, and CLN2 in sit4 mutants. Genetics 139: 95–107, 1995

    PubMed  Google Scholar 

  8. Feffando A, Kron SJ, Rios G, Fink GA, Serrano R: Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol Cell Biol 15: 5470–5481, 1995

    PubMed  Google Scholar 

  9. Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriquez-Navaffo A: Differential expression of genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236: 363–368, 1993

    PubMed  Google Scholar 

  10. Glover CVC, Bidwai AP, Reed JC: Structure and function of Saccharomyces cerevisiae casein kinase II. Cell Mol Biol Res 40: 481–488, 1994

    PubMed  Google Scholar 

  11. Hanna DE, Rethinaswamy A, Glover CVC: Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem 270: 25905–25914, 1995

    PubMed  Google Scholar 

  12. Haro R, Garciadeblas B, Rodriguez-Navarro A: A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291: 189–191, 1991

    PubMed  Google Scholar 

  13. Hemenway CS, Dolinski K, Cardenas ME, Hiller MA, Moremen EW, Heitman J: Vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H+-ATPase assembly. Genetics 141: 833–844, 1995 167

    PubMed  Google Scholar 

  14. Hirata D, Harada S, Namba H, Miyakawa T: Adaptation to high-salt stress in Saccharomyces cerevisiae is regulated by Ca2+/calmodulindependent phosphoprotein phosphatase (calcineurin) and cAMPdependent protein kinase. Mol Gen Genet 249: 257–264, 1995

    PubMed  Google Scholar 

  15. Hockman DJ, Schultz MC: Casein kinase II is required for efficient transcription by RNA polymerase III. Mol Cell Biol 16: 892–898, 1996

    PubMed  Google Scholar 

  16. Hunter T, Plowman GD: The protein kinases of budding yeast: Six score and more. TIBS 22: 18–22, 1997

    Google Scholar 

  17. Issinger O-G: Casein kinases: Pleiotropic mediators of cellular regulation. Pharmacol Theor 59: 1–30, 1993

    Google Scholar 

  18. Jia Z-P, McCullough N, Martel R, Hemmingsen S, Young PG: Gene amplification at a locus encoding a putative sodium proton antiporter confers sodium and lithium tolerance in fission yeast. EMBO J 11: 1631–1640, 1992

    PubMed  Google Scholar 

  19. Ko CH, Gaber RF: TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11: 4266–4273, 1991

    PubMed  Google Scholar 

  20. Krek W, Maridor G, Nigg E: Casein kinase II is a predominantly nuclear enzyme. J Cell Biol 116: 43–56, 1991

    Google Scholar 

  21. Luke MM, Seta FD, Di Como CJ, Sugimoto H, Kobayashi R, Arndt KT: The SAPS, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol Cell Biol 16: 2744–2755, 1996

    PubMed  Google Scholar 

  22. Meggio F, Marin 0, Pinna LA: Substrate specificity of protein kinase CK2. Cell Mol Biol Res 40: 401–409, 1994

    PubMed  Google Scholar 

  23. Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM: The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 269: 8792–8796, 1994

    PubMed  Google Scholar 

  24. Nakamura T, Liu Y, Hirata D, Namba H, Harada S, Hirokawa T, Miyakawa T: Protein phosphatase type 2B (calcineurin)-mediated FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J 12: 4063–4071, 1993

    PubMed  Google Scholar 

  25. Padmanabha R, Chen-Wu JLP, Hanna DE, Glover CVC: Isolation, sequencing, and disruption of the yeast CKA2 gene: Casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10: 4089–4099, 1990

    PubMed  Google Scholar 

  26. Pinna LA: Casein kinase 2: An’ eminence grise’ in cellular regulation? Biochim Biophys Acta 1054: 267–284, 1990

    PubMed  Google Scholar 

  27. Posas F, Camps M, Arino J: The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J Biol Chem 270: 13036–13041, 1995

    PubMed  Google Scholar 

  28. Prior C, Potier S, Souciet J-L, Sychrova H: Characterization of the NHA1 gene encoding a Na+-H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387: 89–93, 1996

    PubMed  Google Scholar 

  29. Ramos J, Alijo R, Haro R, Rodriguez-Navarro A: TRK2 is not a low-affinity potassium transporter. J Bacteriol 176: 249–252, 1994

    PubMed  Google Scholar 

  30. Reed JC, Bidwai AP, Glover CVC: Cloning and disruption of CKB2, the gene encoding the 32-kDa regulatory β′-subunit of Saccharomyces cerevisiae casein kinase II. J Biol Chem 269: 18192–18200, 1994

    PubMed  Google Scholar 

  31. Robinson LC, Hubbard EJA, Graves PR, DePaoli-Roach A, Roach PJ, Kung C, Haas DW, Hagedom CH, Goebl M, Culbertson MR, Carlson M: Yeast casein kinase I homologues: An essential gene pair. Proc Natl Acad Sci USA 89: 28–32, 1994

    Google Scholar 

  32. Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in S. cerevisiae. Genetics 122: 19–27, 1989

    PubMed  Google Scholar 

  33. Skala J, Purnelle B, Crouzet M, Aigle M, Goffeau A: The open reading frame YCR101 located on chromosome III from Saccharomyces cerevisiae is a putative protein kinase. Yeast 7: 651–655, 1991

    PubMed  Google Scholar 

  34. Stein WD: Channels, Carriers, and Pumps: An Introduction to Membrane Transport, Academic Press, New York NY, 1990

    Google Scholar 

  35. Tuazon PT, Traugh JA: Casein kinase I and II-multipotential serine protein kinases: Structure, function and regulation. In: P. Greengard and A. Robinson (eds). Advances in Second Messenger and Phosphoprotein Research, vol. 23. Raven Press, New York NY, 1991, pp 123–164

    Google Scholar 

  36. Van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Konings WN: The plasma membrane of Saccharomyces cerevisiae: Structure, function, and biogenesis. Microbiol Rev 59: 304–322, 1995

    PubMed  Google Scholar 

  37. Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK: The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J 14: 3870–3882, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenney, K.A., Glover, C.V. Transcriptional regulation of the S. cerevisiae ENA1 gene by casein kinase II. Mol Cell Biochem 191, 161–167 (1999). https://doi.org/10.1023/A:1006893824947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006893824947

Navigation