Skip to main content
Log in

Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The heavy-metal accumulator Brassica juncea L. is a high-biomass crop able to extract heavy-metal ions from the soil, a substantial part being translocated from root to shoot. Previous work has shown that Cd accumulation is accompanied by massive formation of phytochelatins (PCs). Rapid de novo synthesis of PCs in roots and leaves requires an increased synthesis of the tripeptide glutathione (GSH), which in turn depends on increased sulfur assimilation. Therefore, we have cloned cDNAs for three enzymes involved in sulfur assimilation, i.e. a putative low-affinity sulfate transporter (LAST) and two isoforms each for ATP sulfurylase (ATPS) and APS reductase (APSR). As degradation of glucosinolates might provide an additional sulfur source under stress, we also cloned a myrosinase (MYR). RNA blot analysis of transcript amounts indicated that upon Cd exposure (25 μM) the expression of ATPS and APSR in roots and leaves of 6-week-old Brassica juncea plants was strongly increased, whereas the expression of MYR was unaffected. LAST transcripts were significantly reduced in the root but remained unchanged in the leaves. Concomitant with Cd induction of ATPS and APSR mRNAs, cysteine concentrations in roots and leaves increased by 81% and 25%, respectively, whereas GSH concentrations decreased in roots and leaves by 39% and 48%, respectively. In agreement with our previous report on Cd induction of γ-glutamylcysteine synthetase in B. juncea, the results indicate coordinate changes of expression for several sulfur assimilation enzymes in response to an increased demand for cysteine during PC synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arisi ACM, Noctor G, Foyer CH, Jouanin L: Modification of thiol contents in poplars (Populus tremula _ P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203: 362–372(1997).

    PubMed  Google Scholar 

  2. Bones AM, Rossiter JT: The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97: 194–208(1996).

    Google Scholar 

  3. Bones AM, Visvalingam S, Thangstad OP: Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases). Planta 193: 558–566(1994).

    Google Scholar 

  4. Chadchawan S, Bishop J, Thangstad OP, Bones AM, Mitchell-Olds T, Bradley D: Arabidopsis cDNA sequence encoding myrosinase. Plant Physiol 103: 671–672(1993).

    Article  PubMed  Google Scholar 

  5. Chen J, Zhou J, Goldsbrough PB: Characterization of phytochelatin synthase from tomato. Physiol Plant 101: 165–172 (1997).

    Google Scholar 

  6. Creissen G, Reynolds H, Xue Y, Mullineaux P: Simultaneous targeting of a pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8: 167–175(1995).

    Article  PubMed  Google Scholar 

  7. De Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO: Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol 104: 255–261 (1994).

    PubMed  Google Scholar 

  8. Falk A, Ek B, Rask L: Characterization of a new myrosinase in Brassica napus. Plant Mol Biol 27: 863–874(1995).

    PubMed  Google Scholar 

  9. Gavel Y, von Heijne G: Cleavage-site motifs in mitochondrial targeting peptides. Protein Engng 4: 33–37(1990).

    Google Scholar 

  10. Grill E, Winnacker E-L, Zenk MH: Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84: 439–443(1987).

    Google Scholar 

  11. Grill E, Winnaker EL, Zenk MH: Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676(1985).

    Google Scholar 

  12. Gupta SC, Goldsbrough PB: Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol 97: 306–312(1991).

    Google Scholar 

  13. Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL: Threemembers of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredxin-like domain and 'APS reductase' activity. Proc Natl Acad Sci USA 93: 13377–13382(1996).

    Google Scholar 

  14. Halkier BA, Du L: The biosynthesis of glucosinolates. TIPS 2: 425–431(1997).

    Google Scholar 

  15. Heijne G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545(1989).

    PubMed  Google Scholar 

  16. Hell R: Molecular physiology of plant sulfur metabolism. Planta 202: 138–148(1997).

    PubMed  Google Scholar 

  17. Klapheck S, Schlunz S, Bergmann L: Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107: 515–521(1995).

    PubMed  Google Scholar 

  18. Klonus D, Höfgen R, Willmitzer L, Riesmeier JW: Isolation and characterization of two cDNA clones encoding ATP sulfurylases from potato by complementation of a yeast mutant. Plant J 6: 105–112(1994).

    PubMed  Google Scholar 

  19. Lappartient AG, Touraine B: Demand-driven control of root ATP sulfurylase activity und SO 2-4 uptake in intact canola. Plant Physiol 111: 147–157(1996).

    PubMed  Google Scholar 

  20. Lappartient AG, Touraine B: Glutathione-mediated regulation of ATP sulfurylase actvity, SO 2-4 uptake, and oxidative stress response in intact canola roots. Plant Physiol 114: 177–183 (1997).

    PubMed  Google Scholar 

  21. Leustek T, Murillo M, Vervantes M: Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional complementation in Saccharomyces cerevisiae. Plant Physiol 105: 897–902(1994).

    PubMed  Google Scholar 

  22. Leustek T:Molecular genetics of sulfate assimilation in plants. Physiol Plant 97: 411–419(1996).

    Google Scholar 

  23. Logan HM, Cathala N, Grignon C, Davidian J-C: Cloning of a cDNA encoded by member of the Arabidopsis thaliana ATP sulfurylase multigene family. J Biol Chem 271: 12227–12233 (1996).

    PubMed  Google Scholar 

  24. Logemann J, Schell J, Willmitzer L: An improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16–20(1987).

    PubMed  Google Scholar 

  25. Löw R, Rausch T: Nonradioactive detection of nucleic acids with biotinylated probes. In: Meier T, Fahrenholz F (eds) A Laboratory Guide to Biotin Labelling in Biomolecule Analysis. BioMethods Vol, 7, pp. 201–213. Birkhäuser Verlag, Basel (1996).

    Google Scholar 

  26. Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8: 4321–4325 (1980).

    PubMed  Google Scholar 

  27. Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H: Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol 112: 1071–1078(1996).

    PubMed  Google Scholar 

  28. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW: Heavy metal tolerance in the fission yeast requires an ATP-binding casette-type vacuolar membrane transporter. EMBO J 11: 3491–3499(1992).

    PubMed  Google Scholar 

  29. Ortiz DF, Ruscitti T, McCue KF, Ow DW: Transport of metalbinding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 9: 4721–4728(1995).

    Google Scholar 

  30. Rauser WE: Phytochelatins. Annu Rev Biochem 59: 61–86 (1995).

    Google Scholar 

  31. Rüegsegger A, Brunold C: Effect of cadmium on γ glutamylcysteine synthesis in maize seedlings. Plant Physiol 99: 428–433(1992).

    Google Scholar 

  32. Rüegsegger A, Schmutz D, Brunold C: Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93: 1579–1584(1990).

    Google Scholar 

  33. Salt DE, Prince RC, Pickering IJ, Raskin I: Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiol 109: 1427–1433(1995).

    PubMed  Google Scholar 

  34. Salt DE, Rauser WE: MgATP-dependent transport of phytochelatin across the tonoplast of oat roots. Plant Physiol 107: 1293–1301(1995).

    PubMed  Google Scholar 

  35. Schäfer HJ, Greiner S, Rausch T, Haag-Kerwer A: In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for γ-glutamycysteine synthetase (γ-ECS) and metallothionein (MT2). FEBS Lett 404: 216–220(1997).

    PubMed  Google Scholar 

  36. Schäfer HJ, Haag-Kerwer A, Rausch T: cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulator Brassica juncea L: evidence for Cd induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37: 87–97(1998).

    PubMed  Google Scholar 

  37. Schäfer HJ, Rausch T: γ-Glutamylcysteine synthetase in Brassica juncea: cloning, expression analysis and regulatory properties of the enzyme. J Exp Bot 49: 25 (1998).

    Google Scholar 

  38. Setya A, Murillo M, Leustek T: Sulfate reduction in higher plants: molecular evidence for a novel 5'-adenylylsulfate reductase. Proc Natl Acad Sci USA 93: 13383–13388(1996).

    Google Scholar 

  39. Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT: Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92: 9373–9377(1995).

    Google Scholar 

  40. Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher A, Warrilow AGS: Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12: 875–884(1997).

    PubMed  Google Scholar 

  41. Speiser DM, Abrahamson SL, Banuelos G, Ow DW: Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiol 99: 817–821(1992).

    Google Scholar 

  42. Steffens JC: The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41: 553–575(1990).

    Google Scholar 

  43. Takahashi H, Sasakura N, Noji M, Saito K: Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. FEBS Lett 392: 95–99(1996).

    PubMed  Google Scholar 

  44. Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, De Almeida Engler J, Engler G, Van Montagu M, Saito K: Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central in Arabidopsis thaliana. Proc Natl Acad Sci USA 94: 11102–11107 (1997).

    Google Scholar 

  45. Thangstad OP, Winge P, Husebye H, Bones A: Themyrosinase (thioglucoside glucohydrolase) gene family in Brassicaeae. Plant Mol Biol 23: 511–524(1993).

    PubMed  Google Scholar 

  46. U N: Genome analysis in Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Jap J Bot 7: 389–452(1935).

    Google Scholar 

  47. Zenk MH: Heavy metal detoxification in higher plants: a review. Gene 179: 21–30(1996).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiss, S., Schäfer, H.J., Haag-Kerwer, A. et al. Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39, 847–857 (1999). https://doi.org/10.1023/A:1006169717355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006169717355

Navigation