Skip to main content
Log in

HYDRODYNAMIC AND MHD EQUATIONS ACROSS THE BOW SHOCK AND ALONG THE SURFACES OF PLANETARY OBSTACLES

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Examinations of the magnetohydrodynamic (MHD) equations across a bow shock are presented. These equations are written in the familiar Rankine–Hugoniot set, and an exact solution to this set is given which involves the upstream magnetosonic Mach number, plasma β, polytropic index, and θ B-v , as a function of position along the shock surface. The asymptotic Mach cone angle of the shock surface is also given as a function of the upstream parameters, as a set of transcendental equations. The standoff position of a detached bow shock from an obstacle is also reviewed. In addition, a detailed examination of the hydrodynamic equations along the boundary of the obstacle is performed. Lastly, the MHD relations along the obstacle surface are examined, for specific orientations of the upstream interplanetary magnetic field (IMF) in relation to the upstream flow velocity vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beard, D. B.: 1960, 'The Interaction of the Terrestrial Magnetic Field With the Solar Corpuscular Radiation', J. Geophys. Res. 65, 3559-3568.

    Google Scholar 

  • Burgess, D.: 1989, 'Cyclic Behavior at Quasi-Parallel Collisionless Shocks', Geophys. Res. Letters 16, 345-348.

    Google Scholar 

  • Busemann, A.: 1933, 'Flössigkeits und Gasbewegung', in Handworterbuch der Naturwissenschaften, Vol. IV, 2nd ed., Gustav Fischer, Jena, p. 244.

    Google Scholar 

  • Cairns, I. H. and Grabbe, C. L.: 1994, 'Towards an MHD Theory for the Standoff Distance of Earth's Bow Shock', Geophys. Res. Letters 21, 2781-2784.

    Google Scholar 

  • Cairns, I. H. and Lyon, J. G.: 1995, 'MHD Simulations of Earth's Bow Shock at Low Mach Numbers: Standoff Distances', J. Geophys. Res. 100, 17 173-17 180.

    Google Scholar 

  • Coroniti, F. V. and Kennel, C. F.: 1972, 'Changes in Magnetospheric Configuration During the Substorm Growth Phase', J. Geophys. Res. 77, 3361-3370.

    Google Scholar 

  • Crooker, N. U., Eastman, T. E., and Stiles, G. S.: 1979, 'Observations of Plasma Depletion in the Magnetosheath at the Dayside Magnetopause', J. Geophys. Res. 84, 869-874.

    Google Scholar 

  • Daskin, W. and Feldman, L.: 1958, 'The Characteristics of Two-Dimensional Sails in Hypersonic Flow', J. Aerospace Sci. 25, 53-55.

    Google Scholar 

  • Dungey, J. W.: 1958, Cosmic Electrodynamics, Cambridge University Press, Cambridge, 183 p.

    Google Scholar 

  • Dungey, J. W.: 1961, 'The Steady State of the Chapman-Ferraro Problem in Two Dimensions', J. Geophys. Res. 66, 1043-1047.

    Google Scholar 

  • Fairfield, D.H.: 1971, 'Average and Unusual Locations of the Earth's Magnetopause and Bow Shock', J. Geophys. Res. 76, 6700-6716.

    Google Scholar 

  • Farris, M. H. and Russell, C. T.: 1994, 'Determining the Standoff Distance of the Bow Shock: Mach Number Dependence and Use of Models', J. Geophys. Res. 99, 17 681-17 689.

    Google Scholar 

  • Farris, M. H., Petrinec, S. M., and Russell, C. T.: 1991, 'The Thickness of the Magnetosheath: Constraints on the Polytropic Index', Geophys. Res. Letters 18, 1821-1824.

    Google Scholar 

  • Ferraro, V. C. A.: 1952, 'On the Theory of the First Phase of a Geomagnetic Storm: A New Illustrative Calculation Based on an Idealized (Plane Not Cylindrical)Model Field Distribution', J. Geophys. Res. 57, 15-49.

    Google Scholar 

  • Formisano, V.: 1979, 'Orientations and Shape of the Earth's Bow Shock in Three Dimensions', Planetary Space Sci. 27, 1151-1161.

    Google Scholar 

  • Freeman, M. P., Freeman, N. C., and Farrugia, C. J.: 1995, 'A Linear Perturbation Analysis of Magnetopause Motion in the Newton-Busemann Limit', Ann. Geophys. 13, 907-918.

    Google Scholar 

  • Grabbe, C. L.: 1996, 'MHD Theory of Earth's Magnetosheath for an Axisymmetric Model', Geophys. Res. Letters 23, 777-780.

    Google Scholar 

  • Grabbe, C. L. and Cairns, I. H.: 1995, 'Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers, J. Geophys. Res. 100, 19 941-19 949.

    Google Scholar 

  • Grad, H.: 1960, 'Reducible Problems in Magneto-fluid Dynamic Steady Flows', Rev. Mod. Phys. 32, 830-847.

    Google Scholar 

  • Hayes, W. D.: 1955, 'Some Aspects of Hypersonic Flow', The Ramo-Wooldridge Corp.

  • Hida, K.: 1953, 'An Approximate Study on the Detached Shock Wave in Front of a Circular Cylinder and a Sphere', J. Phys. Soc. Japan 8, 740-745.

    Google Scholar 

  • Howe H. C., Jr. and Binsack, H.H.: 1972, 'Explorer 33 and 35 Plasma Observations of Magnetosheath Flow', J. Geophys. Res. 77, 3334-3344.

    Google Scholar 

  • Hudson, P. D.: 1970, 'Discontinuities in an Anisotropic Plasma and Their Identification in the Solar Wind', Planetary Space Sci. 18, 1611-1622.

    Google Scholar 

  • Hurley, J.: 1961, 'Interaction Between the Solar Wind and the Geomagnetic Field', New York University College of Engineering Report.

  • Kawamura, T.: 1950, On the Detached Shock Wave in Front of a Body Moving at Speeds Greater Than That of Sound, University of Kyoto, College of Science, Memoirs, Ser. A, Vol. XXVI, No. 3, p. 207-232.

    Google Scholar 

  • Kellogg, P. J.: 1962, 'Flow of Plasma Around the Earth', J. Geophys. Res. 67, 3805-3811.

    Google Scholar 

  • Kennel, C. F. and Edmiston, J. P.: 1988, 'Switch-On Shocks', J. Geophys. Res. 93, 11 363-11 373.

    Google Scholar 

  • Laitone, E. V. and Pardee, O. O'M.: 1947, Location of Detached Shock Wave in Front of a Body Moving at Supersonic Speeds, NACA RM A7B10.

  • Landau, L. O. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon, New York.

  • Lee, L. C., Yan, M., and Hawkins, J. G.: 1991, 'A Study of Slow-Mode Structures in the Dayside Magnetosheath', Geophys. Res. Letters 18, 381-384.

    Google Scholar 

  • Lepping, R. P. and Argentiero, P.D.: 1971, 'Single Spacecraft Method of Estimating Shock Normals', J. Geophys. Res. 76, 4349-4359.

    Google Scholar 

  • Linnell, R. D.: 1958, 'Hypersonic Flow Around a Sphere', J. Aerospace Sci. 25, 65-66.

    Google Scholar 

  • Lomax, H. and Inouye, M.: 1964, Numerical Analysis of Flow Properties About Blunt Bodies Moving at Supersonic Speeds in an Equilibrium Gas, NASA Tech. Rep. R-204, p. 1-78.

  • Mead, G. D.: 1966, in R. J. Mackin, Jr. and M. Neugebauer (eds.), 'The Shape of the Magnetosphere and the Distortion of the Geomagnetic Field', The Solar Wind, Pergamon Press, New York, p. 337.

    Google Scholar 

  • Mead, G. D. and Beard, D. B.: 1964, 'Shape of the Geomagnetic Field Solar Wind Boundary', J. Geophys. Res. 69, 1169-1179.

    Google Scholar 

  • Nagamatsu, H. T.: 1949, Theoretical Investigations of Detached Shock Waves, GALCIT Publ.

  • Ogino, T., Walker, R. J., and Ashour-Abdalla, M.: 1992, 'A Global Magnetohydrodynamic Simulation of the Magnetosheath and Magnetosphere When the Interplanetary Magnetic Field is Northward', IEEE Trans. Plasma Sci. 20, 817-828.

    Google Scholar 

  • Olson, W. P.: 1969, 'The Shape of the Tilted Magnetopause', J. Geophys. Res. 74, 5642-5651.

    Google Scholar 

  • Onsager, T. G., Winske, D., and Thomsen, M. F.: 1991a, 'Interaction of a Finite-Length Ion Beam With a Background Plasma: Reflected Ions at the Quasi-Parallel Shock', J. Geophys. Res. 96, 1775-1788.

    Google Scholar 

  • Onsager, T. G., Winske, D., and Thomsen, M. F.: 1991b, 'Ion Interaction Simulations of Quasi-Parallel Shock Re-formation', J. Geophys. Res. 96, 21 183-21 194.

    Google Scholar 

  • Parker, E. N.: 1961, 'The Solar Wind', in W. Liller (ed.), Space Astrophysics, pp. 157-170, McGraw-Hill Book Co., New York, 272 pp.

    Google Scholar 

  • Parks, G. K.: 1991, Physics of Space Plasmas, Addison-Wesley, Redwood City, CA, 538 pp.

    Google Scholar 

  • Peredo, M. J., Slavin, A., Mazur, E., and Curtis, S. A.: 1995, 'Three-Dimensional Position and Shape of the Bow Shock and Their Variation With Alfvénic, Sonic and Magnetosonic Mach Numbers and Interplanetary Magnetic Field Orientation', J. Geophys. Res. 100, 7907-7916.

    Google Scholar 

  • Petrinec, S. M. and Russell, C. T.: 1993, 'An Empirical Model of the Size and Shape of the Near-Earth Magnetotail', Geophys. Res. Letters 20, 2695-2698.

    Google Scholar 

  • Petrinec, S. M. and Russell, C. T.: 1996, 'The Near-Earth Magnetotail Shape and Size as Determined From the Magnetopause Flaring Angle', J. Geophys. Res. 101, 137-152.

    Google Scholar 

  • Piddington, J. H.: 1960, 'Geomagnetic Storm Theory', J. Geophys. Res. 65, 93-106.

    Google Scholar 

  • Quest, K. B.: 1988, 'Theory and Simulation of Collisionless Parallel Shocks', J. Geophys. Res. 93, 9649-9680.

    Google Scholar 

  • Russell, C. T. and Petrinec, S. M.: 1996, 'Comments on “Towards an MHD Theory for the Standoff Distance of Earth's Bow Shock” by I. H. Cairns and C. L. Grabbe', Geophys. Res. Letters 23, 309-310.

    Google Scholar 

  • Russell, C. T., Zhuang, H. C., Walker, R. J., and Crooker, N. C.: 1981, 'A Note on the Location of the Stagnation Point in the Magnetosheath Flow', Geophys. Res. Letters 8, 984-986.

    Google Scholar 

  • Scholer, M. and Burgess, D.: 1992, 'The Role of Upstream Waves in Supercritical, Quasi-Parallel Shock Re-formation', J. Geophys. Res. 97, 8319-8326.

    Google Scholar 

  • Scholer, M., Fujimoto, M., and Kucharek, H.: 1993, 'Two-Dimensional Simulations of Supercritical Quasi-Parallel Shocks: Upstream Waves, Downstream Waves, and Shock Re-formation', J. Geophys. Res. 98, 18 971-18 984.

    Google Scholar 

  • Seiff, A.: 1962, Recent Information on Hypersonic Flow Fields, NASA SP-24, pp. 19-32.

  • Sibeck, D. G.: 1995, 'Demarcating the Magnetopause Boundary', Rev. Geophys. Suppl. 33, 651-655.

    Google Scholar 

  • Sibeck, D. G., Siscoe, G. L., Slavin, J. A., Smith, E. J., Tsurutani, B. T., and Lepping, R. P.: 1985,' The Distant Magnetotail's Response to a Strong IMF By Twisting, Flattening, and Field Line Bending', J. Geophys. Res. 90, 4011-4019.

    Google Scholar 

  • Sibeck, D. G., Lopez, R. E., and Roelof, E. C.: 1991, 'Solar Wind Control of the Magnetopause Shape, Location, and Motion', J. Geophys. Res. 96, 5489-5495.

    Google Scholar 

  • Slavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., and Akasofu, S.-I.: 1985, 'An ISEE 3 Study of Average and Substorm Conditions in the Distant Magnetotail', J. Geophys. Res. 90, 10 875-10 895.

    Google Scholar 

  • Song, P., Russell, C. T., Gosling, J. T., Thomsen, M. F., and Elphic, R. C.: 1990, 'Observations of the Density Profile in the Magnetosheath Near the Stagnation Streamline', Geophys. Res. Letters 17, 2035-2038.

    Google Scholar 

  • Song, P., Russell, C. T., and Thomsen, M. F.: 1992, 'Slow Mode Transition in the Frontside Magnetosheath', J. Geophys. Res. 97, 8295-8305.

    Google Scholar 

  • Southwood, D. J. and Kivelson, M. G.: 1992, 'On the Form of the Flow in the Magnetosheath', J. Geophys. Res. 97, 2873-2879.

    Google Scholar 

  • Southwood, D. J. and Kivelson, M. G.: 1995, 'Magnetosheath Flow Near the Subsolar Magnetopause: Zwan-Wolf and Southwood-Kivelson Theories Reconciled', Geophys. Res. Letters 22, 3275- 3278.

    Google Scholar 

  • Spitzer, L., Jr.: 1956, Physics of Fully Ionized Gases, Interscience Publ., New York.

    Google Scholar 

  • Spreiter, J. R. and Alksne, A. Y.: 1968, 'Comparison of Theoretical Predictions of the Flow and Magnetic Field Exterior to the Magnetosphere with Observations of Pioneer 6', Planetary Space Sci. 16, 971-979.

    Google Scholar 

  • Spreiter, J. R. and Alksne, A. Y.: 1969, 'Effect of Neutral Sheet Currents on the Shape and Magnetic Field of the Magnetosphere Tail', Planetary Space Sci. 17, 233-246.

    Google Scholar 

  • Spreiter, J. R. and Briggs, B. R.: 1961, Theoretical Determination of the Form of the Hollow Produced in a Solar Corpuscular Stream by the Interaction With the Magnetic Dipole Field of the Earth, NASA TR R-120.

  • Spreiter, J. R. and Briggs, B. R.: 1962, 'Theoretical Determination of the Form of the Boundary of the Corpuscular Stream Produced by Interaction with the Magnetic Dipole Field of the Earth', J. Geophys. Res. 67, 37-51.

    Google Scholar 

  • Spreiter, J. R. and Rizzi, A.W.: 1974, 'Aligned Magnetohydrodynamic Solution for Solar Wind Flow Past the Earth's Magnetosphere', Acta Astrophys. 1, 15-35.

    Google Scholar 

  • Spreiter, J. R. and Stahara, S. S.: 1985, in B. T. Tsurutani and R. G. Stone (eds.), 'Magnetohydrodynamic and Gasdynamic Theories for Planetary Bow Waves', Collisionless Shocks in the Heliosphere: Review of Current Research, AGU Monograph, Vol. 35, pp. 85-107.

  • Spreiter, J. R. and Stahara, S. S.: 1995, 'The Location of Planetary Bow Shocks: A Critical Overview of Theory and Observations', Adv. Space Res. 15(8/9), 433-449.

    Google Scholar 

  • Spreiter, J. R. and Jones, W. P.: 1963, 'On the Effect of a Weak Interplanetary Magnetic Field on the Interaction Between the Solar Wind and the Geomagnetic Field', J. Geophys. Res. 68, 3555-3564.

    Google Scholar 

  • Spreiter, J. R., Summers, A. L., and Alksne, A. Y.: 1966, 'Hydromagnetic Flow Around the Magnetosphere', Planetary Space Sci. 14, 223-253.

    Google Scholar 

  • Szabo, A.: 1994, 'An Improved Solution to the “Rankine-Hugoniot” Problem', J. Geophys. Res. 99, 14 737-14 746.

    Google Scholar 

  • Thomas, V. A., Winske, D., and Omidi, N.: 1990, 'Re-forming Supercritical Quasi-Parallel Shocks, 1. One-and Two-dimensional Simulations', J. Geophys. Res. 95, 18 809-18 820.

    Google Scholar 

  • Unti, T. and Atkinson, G.: 1968, 'Two-Dimensional Chapman-Ferraro Problem with Neutral Sheet, 1. The Boundary', J. Geophys. Res. 73, 7319-7327.

    Google Scholar 

  • Van Dyke, M. D. and Gordon, H. D.: 1959, Supersonic Flow Past a Family of Blunt Axisymmetric Bodies, NASA Tech. Rep. R-l, pp. 1-25.

  • Viñas, A. F. and Scudder, J. D.: 1986, 'Fast and Optimal Solution to the “Rankine-Hugoniot Problem”', J. Geophys. Res. 91, 39-58.

    Google Scholar 

  • Voigt, G.-H. and Wolf, R. A.: 1988, 'Quasi-Static Magnetospheric MHD Processes and the 'Ground State' of the Magnetosphere', Rev. Geophys. 26, 823-843.

    Google Scholar 

  • Walters, G. K.: 1964, 'Effect of Oblique Interplanetary Magnetic Field on Shape and Behavior of the Magnetosphere', J. Geophys. Res. 69, 1769-1783.

    Google Scholar 

  • Winske, D., Omidi, N., Quest, K. B., and Thomas, V. A.: 1990, 'Re-forming Supercritical Quasi-Parallel Shocks, 2. Mechanism for Wave Generation and Front Re-formation', J. Geophys. Res. 95, 18 821-18 832.

    Google Scholar 

  • Wu, C. C.: 1992, 'MHD Flow Past an Obstacle: Large-Scale Flow in the Magnetosheath', Geophys. Res. Letters 19, 87-90.

    Google Scholar 

  • Zhang, T.-L., Luhmann, J. G., and Russell, C. T.: 1991, 'The Magnetic Barrier at Venus', J. Geophys. Res. 96, 11 145-11 153.

    Google Scholar 

  • Zhang, T.-L., Schwingenschuh, K., Russell, C. T., Luhmann, J. G., Rosenbauer, H., Verigin, M. I., and Kotova, G.: 1994, 'The Flaring of the Martian Magnetotail Observed by the Phobos 2 Spacecraft', Geophys. Res. Letters 21, 1121-1124.

    Google Scholar 

  • Zhang, T.-L., Schwingenschuh, K., Petrinec, S. M., Russell, C. T., Luhmann, J. G., Rosenbauer, H., Verigin, M. I., and Kotova, G.: 1995, 'Studies of the Draping and Flaring Angles of the Mars and Earth Magnetotails', Adv. Space Res. 16(4), 99-103.

    Google Scholar 

  • Zhigulev, V. N. and Romishevskii, E. A.: 1959, 'Concerning the Interaction of Currents Flowing in a Conducting Medium With the Earth's Magnetic Field', Doklady Akad. Nauk SSSR 127, 1001-1004 (English translation: 1960, Soviet Phys. Doklady 4, 859-862).

    Google Scholar 

  • Zhuang, H. C., Russell, C. T., and Walker, R. J.: 1981, 'The Influence of Interplanetary Magnetic Field and Thermal Pressure on the Position and Shape of the Magnetopause', J. Geophys. Res. 86, 10 009-10 021.

    Google Scholar 

  • Zhuang, H. C. and Russell, C. T.: 1981, 'An Analytic Treatment of the Structure of the Bow Shock and Magnetosheath', J. Geophys. Res. 86, 2191-2205.

    Google Scholar 

  • Zwan, B. J. and Wolf, R. A.: 1976, 'Depletion of Solar Wind Near a Planetary Boundary', J. Geophys. Res. 81, 1636-1648.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrinec, S.M., Russell, C.T. HYDRODYNAMIC AND MHD EQUATIONS ACROSS THE BOW SHOCK AND ALONG THE SURFACES OF PLANETARY OBSTACLES. Space Science Reviews 79, 757–791 (1997). https://doi.org/10.1023/A:1004938724300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004938724300

Keywords

Navigation