Skip to main content
Log in

Thermal behaviour of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block copolymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal behavior of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block copolymers with different block lengths is examined. Thermal behavior of specimens crystallized under the isothermal and dynamic condition are characterized by DSC. Also WAXD and SAXS are employed to investigate the structure. Depending on the relative length of each block, tri-block copolymers can be classified into three groups: PCL dominant crystallization; PEG dominant crystallization; and the competing case. When the crystallization of PEG and PCL are competing, the crystallization of each block shows strong dependency on the thermal hystory of crystallization, leading to multiple melting and crystallization peaks. Also, the typical micro-phase separation of block copolymers seems to play an important role, competing with crystallization, especially under the dynamic crystallization condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Harris, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C25(3) (1985)325.

    Google Scholar 

  2. Z. K. Zhou, Macromolecules 21 (1988) 2548.

    Google Scholar 

  3. G. Wanka, H. Hoffman and W. Ulbricht, Colloid Polym. Sci. 268 (1990) 101.

    Google Scholar 

  4. P. Linse and M. Malmsten, Macromolecules 25 (1992) 5434.

    Google Scholar 

  5. L. Martini, D. Attwood, J.H. Collett, C. V. Nicholas, S. Tanodekaew, N. J. Deng, F. Heatley and C. Booth, J. Chem. Soc. Faraday Trans. 90(13) (1994) 1961.

    Google Scholar 

  6. D. S. Hu and H. J. Liu, J. Appl. Polym. Sci. 51 (1994) 473.

    Google Scholar 

  7. E. Piskin, X. Kitian, E. B. Denkbas and Z. Kucukyvuz, J.Biometer. Sci. Polymer Edn. 7(4) (1995) 359.

    Google Scholar 

  8. S. M. Li, I. Rashkov, J. L. Espartero, N. Manolova and M. Vert, Macromolecules 29 (1996) 57.

    Google Scholar 

  9. C. G. Pitt, A.R. Jeffcoat, R. A. Zweidinger and A. Schindler, J. Biomed. Mater. Res. 13 (1979) 497.

    Google Scholar 

  10. M. Chasin and R. Langer, “Biodegradable Polymers as Drug Delivery Systems” (MarcelDekker, New York, 1990).

    Google Scholar 

  11. S. Nojima, S. Yamamoto and T. Ashida, Polymer J. 27(1995) 673.

    Google Scholar 

  12. S. Nojima, M. Kuroda and S. Sasaki, ibid. 29(1997) 642.

    Google Scholar 

  13. S. Nojima, K. Hashizume, A. Rohadi and S. Sasaki, Polymer 38(1997) 2771.

    Google Scholar 

  14. M. C. Luyten, E. J. F. Bogels, G. O. R. Alberda, G. Ten Brinke, W. Bras, B. E. Komanschek and A. J. Ryan, ibid. 38 (1997) 509.

    Google Scholar 

  15. S. Nojima, H. Tanaka, A. Rohadi and S. Sasaki, ibid. 39 (1998)1727.

    Google Scholar 

  16. H. L. Chen, L. J. Li and T. L. Lin, Macromolecules 31 (1998) 2255.

    Google Scholar 

  17. M. Vanneste and G. Groeninckx, Polymer 36 (1995) 4253.

    Google Scholar 

  18. R. Perretand A. Skoulios, Makromol. Chem. 162 (1972) 147.

    Google Scholar 

  19. Idem., ibid.162 (1972) 163.

  20. Z. Gan, B. Jiang and J. Zhang, J. Appl. Polym. Sci. 59(1996) 961.

    Google Scholar 

  21. Z. Gan, J. Zhang and B. Jiang, ibid. 63(1997) 1793.

    Google Scholar 

  22. B. Bogdanov, A. Vidts, A. Van Den Bulcke, R. Verbeeck and E. Schacht, Polymer 39 (1998) 1631.

    Google Scholar 

  23. C. P. Buckley and A. J. Kovacs, Colloidand polymer Sci. 254 (1976) 695.

    Google Scholar 

  24. S. Z. D. Cheng, J. Chen, J. S. Barley, A. Zhang, A. Habenschuss and P. R. Zschack, Macromolecules 25 (1992) 1453.

    Google Scholar 

  25. B. Wunderlich, “Macromolecular Physics, Vol. 2” (Academic Press, New York, 1976) p.166.

    Google Scholar 

  26. Idem., “Macromolecular Physics, Vol. 3” (Academic Press, New York, 1980) p. 67.

    Google Scholar 

  27. M. Aubin and R. E. Prud'homme, Macromolecules 21 (1988) 2945.

    Google Scholar 

  28. P.J. Holdsworth and A. Tuener-Jones, Polymer 12 (1971) 195.

    Google Scholar 

  29. P. J. Lemstra, T. Kooistra and G. Challa, J. Polym. Sci., Polym. Phys. Ed. 10 (1972) 823.

    Google Scholar 

  30. S. Ishikawa, K. Ishizu and T. Fukutomi, Polymer Communications 32 (1991) 374.

    Google Scholar 

  31. V. Balsamo, A. J. Muller, F. von Gyldenfeldt and R. Stadler, Macromol. Chem. Phys. 199 (1998) 1063.

    Google Scholar 

  32. V. Balsamo, F. von Gyldenfeldt and R. Stadler,ibid. 197 (1996) 3317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J.H., Kim, H.S., Chung, D.J. et al. Thermal behaviour of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block copolymers. Journal of Materials Science 36, 715–722 (2001). https://doi.org/10.1023/A:1004845109809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004845109809

Keywords

Navigation